
Registration and resampling of large-scale 3D 

mosaic images 
 

Michael N Economo, Nathan G Clack, Ben J Arthur, Christopher Bruns, Erhan Bas, Jayaram Chandrashekar 

Janelia Research Campus, Howard Hughes Medical Institute 

Ashburn, VA, USA 

 

 
Abstract - Determining the detailed structure of intact organs 

such as the mammalian brain requires submicron (~0.1 µm3 

voxel size) imaging of large tissue volumes - often hundreds of 

mm3.  Due to limitations in imaging technologies, large numbers 

of smaller images, each representing a subset of the full sample, 

are acquired and assembled into a continuous whole using image 

registration techniques. The full mouse brain requires 

approximately 10 teravoxels for a complete representation at 

diffraction-limited resolution. However, relatively few tools exist 

for processing biological datasets of this magnitude.  Here, we 

describe a procedure for the registration and resampling of 

large-scale imaging data that can be employed for assembling 

tens of thousands of individual image volumes tiling complete 

organs in three dimensions. 

Index Terms—Fluorescence microscopy, Neuroanatomy, 

Image registration. 

I. INTRODUCTION 

In many biological applications, it is necessary to 

visualize complete organs at high resolution in order to 

investigate spatially extended, fine-scale structures.  This is 

particularly true in mammalian neuroanatomy, as individual 

neuronal fibers as thin as 100 nm in diameter can traverse 

long distances before reaching their targets – e.g. many 

millimeters in the rodent brain.  In order to image 

fluorescently-labeled structures in large tissue volumes at 

high resolution, serial two-photon tomography has been 

employed in the past [1], [2].  In this approach, a thin 

volume near the exposed surface of a tissue sample is 

imaged repeatedly while sections with a thickness of ~100 

microns are progressively removed.  While block-face 

imaging inherently produces images that are approximately 

aligned, the process of sectioning deforms soft tissue and 

creates severe discontinuities at the micron scale.  For this 

reason, constructing complete, continuous image volumes 

from large tissue samples remains challenging.  

Furthermore, visualizing the resulting image volumes – 

typically ~20 TB per color channel for the mouse brain – is 

not possible using commonly available software packages 

for biological image processing.  Here, we describe an 

approach for registering large collections (tens of 

thousands) of three-dimensional image stacks totaling 100 

TB in size or larger and the resampling of such datasets into 

an efficiently navigable representation. 

 

 
 

 

 
Fig. 1 – Schematic of 3D mosaic imaging.  An image volume is acquired 

by serially imaging many smaller three-dimensional image tiles, which are 

arranged into layers.  This approach can be used to image large structures, such 
as the full mouse brain. 

 

II. METHOD 

A. Image registration 

We consider the case in which a large, three-dimensional 

tissue volume (up to 1 cm
3
) is imaged using volumetric serial 

two-photon tomography.  Here, individual three-dimensional 

sub-volumes (‘tiles’) covering the full tissue specimen are 

serially acquired.  To facilitate post-hoc registration, tiles are 

acquired such that they overlap in all three dimensions (Figure 

1). A high-fidelity stage system ensures that tiles bordering in 

the x- and y- directions can be aligned simply by translating 

adjacent image stacks over a distance specified by the 

corresponding movement of the stage system.  However, 

physical sectioning of the tissue specimen, e.g. by an integrated 

vibrating microtome, introduces plastic deformation and 

subsequent misalignment between image tiles bordering in the 

z direction. This requires post-hoc registration of neighboring 

tiles. 

In this case, image registration is first carried out pairwise 

between pairs of tiles that are adjacent in the z-direction.  The 

adult mouse brain contains ubiquitous fluorescence puncta 

(‘lipofuscin’ [3]) that permit accurate registration using point-

cloud registration algorithms.  This procedure can be carried 

out in parallel on a high-performance computing cluster.  In 

our approach, we first identified a set of matched descriptors 

contained within the overlap regions of all tile pairs across a 

pair of adjacent tile layers using a previously-described 

approach [4].   Next, using the coordinates of the stage system 



recorded during acquisition of each tile and the microscope 

field of view dimensions, we projected the location of these 

descriptors into the coordinate system of the mechanical stages 

using an affine transformation.  This procedure provided an 

estimate of the position of each descriptor before and after the 

tissue was sectioned.  The displacement between these 

estimates represents the deformation due to sectioning.  For 

each pair of descriptors, the displacement between them was 

halved and assigned to the position of each descriptor (with 

opposite polarity) producing two displacement fields – the first 

from the descriptors in the bottom of one section and the 

second for the corresponding descriptors in the overlap region 

at the top of the next section.   

In order to construct a smoothly-varying displacement 

function across the full extent of the tissue, we used an existing 

surface-fitting procedure [5] parameterized from R
2
 →R

3
 to 

find a surface corresponding to the displacement field in each 

dimension.  This generated two sets of surfaces per tissue 

section - displacement in x, y and z for the top and bottom of 

adjacent tile layers. 

For each tile, the surfaces corresponding to displacement of 

the top of the tile and displacement of the bottom of the tile 

were sampled at  9x9 grid of points equally spaced in the x and 

y directions (~50 um spacing between grid lines).  The z 

position of these control points was set to the center of the 

overlapping region for each pair of tiles. The resulting 

displacement fields were used to adjust the three-dimensional 

position of the 162 control points for each tile (81 for the top of 

the tile and 81 for the bottom) in the coordinate system of the 

mechanical stages and then a new, final set of control points 

were produced on the top and bottom surface of each tile using 

linear extrapolation from the points of the initial control set.    

 

 
 

Fig. 2 – Location of control points for a single tile when partitioned using a 
5x5 lattice (left).  Deformation of tile exaggerated for illustration.  

Approximation of individual subvolume as the union of 5 tetrahedra (right). 

 

B. Image resampling 

To create a navigable representation of the full image 

volume, the collection of individual, overlapping tiles was 

resampled using the registration information into a new set of 

three-dimensional image stacks that tile the imaged volume in 

a non-overlapping manner.     

Briefly, the 9x9 grid of points on the upper and lower 

surfaces partition each overlapping tile into 64 subvolumes 

which extend the full length of the z direction (Figure 2, left).  

Since the four corners of each subvolume face are displaced 

independently, they may not necessarily remain coplanar. Each 

face can be represented by two triangles, and thus the interior 

by five tetrahedral (Figure 2, right).   

A barycentric transform was used to resample each interior 

tetrahedron into the coordinate system of the mechanical stages 

to produce the non-overlapping tile set.  Trilinear interpolation 

was chosen to balance image quality and compute time.  The 

resulting registration was markedly better than constraining the 

subvolumes to be parallelepipeds, i.e. using a unique affine 

transform for each subvolume.  

Contiguous tiles were processed together on the same node 

of a computing cluster so that spatial locality could be 

leveraged to minimize file I/O.  The entire brain volume was 

partitioned into contiguous chunks of tiles by iteratively 

dividing in half along the longest dimension until each partition 

contained a manageable number of tiles.  Tiles in each partition 

were traversed in Morton order and the image stacks in the 

output set that overlapped multiple original tiles were merged 

in local memory before transferring to a file system shared 

across nodes.  Care was taken to balance the load across 

multiple nodes so that no one job dominated the finishing time.  

 

 
 

 

Fig. 3 – Reduction in feature displacement following registration in the 
axial (top) and lateral (bottom) directions. 



 

Full-resolution non-overlapping output image stacks were 

downsampled by a factor of two in each dimension, six 

successive times to form a seven-level octree.  The resulting 

14% increase in required storage space facilitated exploration 

of the dataset a various levels of resolution in an efficient 

manner. 

 

III. RESULTS 

We applied our registration procedure to a dataset wherein 

32201 tiles represent the full mouse brain.  This dataset 

contained 97 layers and the point-cloud matching algorithm 

identified an average of 13,756 descriptors per layer.  Before 

registration, descriptors were displaced by 6.89 ± 5.61 microns 

axially and 5.72 ± 4.24 microns laterally on average, consistent 

with adjacent layers being approximately aligned after block-

face imaging.  Following our registration procedure, however, 

descriptor displacement was reduced substantially to 0.3 ± 0.51 

and 0.27 ± 0.3 microns axially and laterally, respectively – 

values similar to the diffraction limit for fluorescence 

microscopy.  In addition, the fraction of descriptors displaced 

by more than 1 micron was reduced dramatically in both the 

axial and lateral directions (axial: 0.92 to 0.04; lateral: 0.96 to 

0.03.  Figure 3 summarizes the displacement of all identified 

descriptors before and after our registration procedure. 

Image resampling required 3-1/2 days of compute time on a 

high-performance computing cluster (13 nodes each with 32 

2.3GHz Intel Haswell cores and 256 GB memory) using the 

Julia language to script custom compute-intensive C++ code, 

and generated 138,910 non-overlapping octree nodes precisely 

tiling the full mouse brain. These resulting registered and 

resampled image volumes could be effectively visualized and 

navigated using both custom [6] and existing applications [7-

9]. 

 

IV. CONCLUSIONS AND FUTURE WORK 

The registration and resampling procedure described herein 

was found to be computationally efficient enough that it could 

be completed in substantially less time than that required for 

image acquisition and provided sufficient accuracy to make 

neuronal processes within individual tiles appear continuous 

across the vast majority of tile boundaries.  Furthermore, the 

construction of a hierarchically-downsampled octree 

representation enabled efficient browsing of data at multiple 

spatial scales.  The registration problem becomes somewhat 

more complex and computationally intensive when lateral 

registration between tiles cannot be assumed – e.g. when a 

high-fidelity mechanical stage system is not available to 

precisely translate the sample between acquisitions of 

subsequent tiles.  This case remains an outstanding problem for 

future studies. 
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