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Abstract—In this paper, we show how popular open-source 

data analytics platforms, such as KNIME, coupled with industry 

standard cluster computing systems such as Hadoop and Spark 

can be leveraged to build a highly flexible, scalable and user-

friendly collaborative framework for the analysis of high-content 
hyperplexed molecular imaging data in a public cloud. 

Index Terms—Large-scale Imaging, Molecular Pathology, 

Hyperplexed Microscopy, KNIME workflow, Big Data systems, 
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I. INTRODUCTION 

In the era of precision medicine, deep analysis of image 

data acquired from advanced microscopy imaging instruments 

is critical to life science research and improved healthcare. The 

application of biomedical imaging informatics techniques to 

molecular pathology data enables the precise characterization 

of tissue specimens at cellular and sub-cellular granularities. 

Biologists and other life science researchers rely heavily on 
these characterizations to identify and develop novel diagnostic 

methods for complex disease conditions such as cancers. 

Molecular pathology, the discipline which couples 
molecular information such as protein expression with tissue 

morphology, has been greatly expanded over the past decade 

through the adoption of fluorescent technologies that allow for 

multiplex staining to probe for the presence of biomarkers in 

tissue samples. The spatial distributions and signal intensities 

of markers within these samples represent the levels of 

expression of proteins within different regions of the tissue. 

The maximum number of distinct biomarkers that can be 

examined at once in a given sample is limited by the number of 

distinct fluorescent channels that can be imaged – typically, 

this number is less than 5. In extreme cases, the use of 

hyperspectral imaging can increase this number to about 10. 

GE Global Research has developed a novel hyperplexed 

microscopy imaging technique called MultiOmyxTM(*) for 
sequential staining, with iterative chemical removal of stains 

between rounds, such that the same tissue specimen can be 

repeatedly re-stained with a larger number (~60, possibly 

more) of different antibodies [1]. The MultiOmyx technology 

coupled with novel single cell analysis can generate a wealth of 

spatially-distributed biomarker information from a single 

physical tissue sample. This in-situ analysis of multiple 

proteins in a single sample can provide a comprehensive 

molecular profile for the specimen in question, thereby 

                                                        
*
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enabling biologists to carry out large-scale biopharmaceutical 

research studies targeting precision diagnostics. 

When combined with high-throughput tissue analysis 

methodologies such as Tissue Microarrays (TMAs), 

hyperplexed microscopy can generate unprecedented volumes 

of high-content image data. For instance, a typical cancer study 

could comprise samples from a cohort of 300 subjects with 3 

TMA cores per subject (typically 0.6mm in diameter/core). In 

tumor samples, we routinely find 1,500 to 3,000 cells per FOV 

and 40-60 markers imaged producing expression values for 3 

cellular compartments (nucleus, cytoplasm, and cell 

membrane). An enormous amount of quantitative information 

(hundreds of millions of data points) is generated per study 
which, when correlated against known clinical information, can 

enable discovery of new biomarkers for improved disease 

diagnosis and therapeutic selection. As manual review of such 

large, content-rich data is prohibitive, automated computational 

approaches are of paramount importance. The availability of 

novel algorithms to analyze hyperplexed data notwithstanding, 

researchers often complain about the lack of a software 

framework that will allow them to efficiently transform large 

image data into a custom set of quantitative features for 

exploratory correlation hypothesis testing and visualization. 

Working closely with GE cancer biologists, we gathered 

the following set of key requirements for a software framework 

to enable MultiOmyx image and data analysis: 

1. Increased Productivity: Currently, researchers spend days 

or even weeks extracting biomarker information from raw 

image data. Speeding up this process will enable them to 

instead spend majority of their time performing statistical 

analysis on processed data to discover novel biomarkers.  

2. Flexibility and Ease of use: Researchers want a self-

service, plug-and-play style analysis model that is easy to 
understand, and allows them to perform custom data 

analysis operations themselves, without the need to rely on 

software experts or statisticians for each experimental run. 

3. Reliability: Researchers want a computational platform 

capable of generating reproducible analysis results even in 

the presence of unexpected hardware/software failures. 

4. Secure Collaboration: Researchers want the ability to 

share datasets, analysis, and findings with collaborators 

from external organizations in a secure, timely manner. 

Additionally, researchers also want to avoid vendor lock-in and 

expensive license/subscriptions associated with commercial 

software. This paper describes how we developed a software 

framework to address the above requirements exclusively using 



open-source solutions. Specifically, we describe our prototype 

of such a framework built using a popular analytics platform 

called KNIME [2] and industry-standard cluster computing 

systems like Hadoop [3] and Spark [4]. We also demonstrate 

its use in enabling collaborative analysis for MultiOmyx in the 

Amazon Web Services (AWS) cloud.   

II. HIGH-CONTENT IMAGE DATA ANALYSIS 

Tissue specimen content is structurally complex. Tumor 

samples, for instance, contain a multitude of cell and tissue 
types including epithelial, stromal, smooth muscle, nerve and 

immune cells. Cells, in turn, consist of nuclei, membrane and 

cytoplasmic components. The primary goal of MultiOmyx 

analysis is the in-depth examination of protein expression 

values within these tissue and cell structures based on average 

signal intensity, expression ratios between cell compartments 

or other statistical determinations of expression such as 

standard deviation across cell populations. Using the relative 

distribution of one or more biomarkers within tissue regions of 

interest, biologists may test multiple hypotheses (e.g., Do the 

number and sub-type of T-cells associated with a primary 

tumor predict therapeutic response? Or, is localization of the 
cells the critical predictive feature?). Given the large number of 

markers imaged in MultiOmyx studies, the number of such 

hypotheses could grow exponentially. Analysis of high-content 

image datasets is carried out using well-defined pipelines of 

data processing operations [5]. Figure 1 shows a high-level 

pipeline of operations for analyzing MultiOmyx image data.    

 

 

Fig. 1.  Canonical End-to-end Data Analysis Pipeline in MultiOmyx 

Depending on the specific study, the nature of the disease 

and cell types involved, biologists assemble custom analysis 
pipelines using combinations of some or all these operations. 

The outputs from these pipelines may be used for patient 

stratification, studying co-localization patterns, differential 

diagnoses and validating markers on new patient cohorts.    

III. RELATED WORK  

Existing well-established image processing libraries like 

ImageJ/Fiji [6] provide interfaces for easily plugging in custom 

biomedical image analysis algorithms. However, ImageJ is not 

designed to process large-scale data, and does not support 

flexible pipelines. Frameworks like HIPI [7] and 

OpenIMAJ/Image Terrier [8] use Hadoop to scale up very 
large-scale image analysis operations, but do not focus on high-

content biomedical image data. Bajcsy et al. [9] use Hadoop to 

process large-scale microscopy image data on compute 

clusters, but do not provide a framework for analysis pipeline 

composition. CellProfiler (and Analyst) [10] enables assembly 

of image analysis pipelines for processing cellular image data. 

Analogous to high-throughput processing of TMAs, it can 

efficiently process tens of thousands of images obtained from 

well plates. Unlike CellProfiler, we use Hadoop and Spark for 

reliable computation which allows us to leverage on-demand 

compute clusters on public cloud environments like Amazon’s 

AWS cloud for collaborative research. Finally, newer cloud 
image processing frameworks like 4Quant [11] and NeCTAR 

[12] support collaborative analysis orchestration and execution 

in public clouds, and share similar motivations to our work. 

However, they are not optimized for analysis of many 

biomarkers in hyperplexed image datasets. To our knowledge, 

there is no single open-source framework that supports all the 

requirements for MultiOmyx analysis listed in Section I. 

IV. FRAMEWORK FOR MULTIOMYX ANALYSIS 

This section describes our prototypical software framework 

to support collaborative analysis of large-scale image data in 

MultiOmyx. Our prototype has been used to support multiple 

GE-internal cancer research studies, and is also being piloted in 

cloud-based collaborative efforts with two external research 

organizations. Salient features of our framework include: 

 Loose integration of KNIME [2] with Hadoop [3] and 

Spark [4] to enable user-friendly composition of 

pipelines of image analysis operations and their 

subsequent execution on large compute clusters. 

 Standardized model of data exchange between analysis 
steps in a KNIME workflow to enable highly flexible 

plug-and-play analysis of MultiOmyx image data. 

 Growing library of highly parallelized image and 
numerical data analysis operations implemented using 

the MapReduce programming model [13] so that large-

scale TMA studies run 45-95 times faster on clusters. 

 Seamless transition between local and cloud execution 

modes, both controlled via a common user interface. 

Analysis pipelines that run locally on ‘on-premise’ 

clusters can be further scaled up by running them on 

on-demand elastic clusters in the Amazon AWS cloud. 

The cloud execution mode also supports highly secure 

collaboration with external researchers. 

Figure 2 shows the high-level architecture of our 

framework and its various components. 



 
Fig. 2.  High-level Architecture of Framework for MultiOmyx analysis 

Preprocessed images for all studies are persisted in a 

durable storage system, while metadata containing detailed 

information on the acquisition process for each study is 

captured in a relational database. Biologists interact with 

MultiOmyx data in two ways – they 1) apply analysis 

algorithms to process the data, and 2) view images using 

custom visualization tools.  

Our framework uses the open-source KNIME (Konstanz 

Information Miner) platform [2] to allow biologists to create, 
configure and execute ad hoc analysis workflows. KNIME has 

a graphical user interface that allows users to drag-and-drop 

nodes onto an editor to create such workflows. We created 

KNIME extensions that allow MultiOmyx–specific analysis 

algorithms to be plugged in as nodes in a workflow, as shown 

in fig. 3. In our framework, any algorithm-specific parameters 

(such as min and max levels for nuclear segmentation), that 

allow users to adapt algorithms to different image scenarios 

can be configured within the corresponding node’s dialog box.  

Additionally, biologists can greatly benefit from flexible 

pipeline reuse – that is, the ability to take an existing workflow 

originally created for one study, and re-use it for an entirely 

different study, by swapping out some workflow nodes and 

replacing them with relevant ones for the new study. Also, it 
may be desirable to compare alternative workflows that test the 

same hypothesis – one may segment the membrane, while the 

other may examine the cytoplasm instead. In such cases, it 

makes sense to have a plug-and-play analysis model (e.g., 

given a list of images, one can apply any segmentation 

algorithm), instead of creating different workflow instances for 

each alternative. To facilitate such flexibility, we developed a 

standardized, self-describing model of data exchange between 

MultiOmyx analysis nodes by extending KNIME’s 

BufferedDataTable structure. Thus, biologists can avail of self-

service, reusable analysis workflows without relying on 

software experts. Once workflows are created using KNIME, 
our framework leverages cluster computing platforms, when 

available, to efficiently execute individual analysis operations. 

 

 

Fig. 3.  KNIME extensions for MultiOmyx analysis orchestration 

We have accomplished a loosely-coupled integration of 

KNIME with scalable data processing systems like Apache 

Hadoop [3] and Spark [4] to reliably process large image 

datasets on low-cost, commodity hardware. As these systems 

are not designed to work out of the box with image data, we 

implemented a parallelized library of MultiOmyx-specific 

image analysis operations using the MapReduce programming 

model [13]. By design, each image analysis node runs as a 

Hadoop MapReduce job, while Spark is used to scale up 

computationally intensive statistical analysis steps such as data 
clustering. Our Hadoop jobs exploit the inherent parallelism 

present at multiple data granularities to decompose analysis 

into a large number of constituent tasks. We parallelize across 

studies, across slides in each study, across TMA samples in 

each slide, and across biomarkers within each sample. 

However, all the complexity in execution on these cluster 

computing platforms is transparent to the biologists – our 

framework takes care of all data movement and job scheduling 

under the hood. 

The most tangible benefit of this framework feature is the 

reduced analysis execution times. We transitioned MultiOmyx 

lung cancer analysis of 32 biomarkers and 3000+ samples from 

a single (12-core) server implementation that the biologists 

used previously, to our framework running on a 47-server 

Hadoop cluster. As seen in table I, biologists previously spent 
almost 2 days every time they ran an analysis workflow that 

computed both image-level and single cell metrics for this data. 

TABLE I.  PERFORMANCE IMPROVEMENT FOR PILOT MULTIOMYX STUDY 

Slide 

ID 

# of 

TMA 

samples 

Total  

# of 

images 

Total 

image 

data size 

Analysis Execution Time 

Single 
server 

(min.) 

Hadoop (47 servers) 

Parallel 

by 

sample 

Parallel by 

slide & 

sample 

1 572 90,978 577.5 GB ~ 480 15 min 66 min 

2 516 81,558 508 GB ~ 480 14 min 66 min 

3 444 70,182 441 GB ~ 480 12 min 65 min 

4 572 90,978 578.3 GB ~ 480 15 min 67 min 

5 516 81,558 509.2 GB ~ 480 14 min 65 min 

6 444 70,182 438.7 GB ~ 480 12 min 64 min 

Total 3,064 485,436 3.053 TB 48 hrs ∑=1.4 hrs max=1.1 hrs 



Our framework ran the same workflow almost 36 times faster 

when analysis was parallelized only across samples within 

each slide. When all 6 slides were processed concurrently, 

execution was 43 times faster than on the single server. This 

order-of-magnitude improved execution time allows biologists 

to now spend the majority of their time on exploratory analysis 
of the metrics and hypothesis testing. More significantly, it 

leads to newer research methodologies, wherein biologists are 

able to run many more analyses in a given time than was 

previously possible. This allows fine-tuning of algorithm 

parameters and increases the analysis precision and confidence 

in the diagnosis results. Using our framework, biologists can 

not only run image analysis operations but also run statistical 

analysis on the resulting data, either via R code snippets or by 

using Spark libraries, all within the same KNIME workflow.  

V. CLOUD-BASED COLLABORATION FOR MULTIOMYX 

Our framework for MultiOmyx analysis supports a cloud 

execution mode that is currently being piloted in the Amazon 

Web Services (AWS) cloud to support collaboration with 

research groups external to GE. As seen in fig. 4, the high-level 

architecture of our framework’s cloud version has some key 
differences: All MultiOmyx data is stored in the cloud (in 

encrypted form, for data protection), and is now processed 

using computing resources provisioned on-demand within the 

cloud. To this end, our framework integrates a number of 

managed AWS services including the Simple Storage Service 

(S3), the Relational Database Service (RDS), and the Elastic 

MapReduce (EMR) service, with our own services for secure, 

high-speed upload and download of datasets to and from S3.    

 
Fig. 4.  Cloud-based Architecture for MultiOmyx collaboration 

Biologists at GE and external research collaborators access 

(via remote desktop) virtual workstations in AWS that are pre-

installed with the desired analysis and visualization tools. 

They can collaborate on common workflows via shared 

installations of KNIME. The KNIME-based interface to data 

analysis is common across both local and cloud execution 

modes, making it possible for locally created workflows to be 

transitioned with minimal changes to run in the cloud. This 

interface masks users from our complex re-architecture of the 

framework to execute KNIME workflows in AWS. To save 

resource usage costs in AWS, analysis here is carried out on 

transient EMR Hadoop clusters than can be right-sized and 

provisioned on-demand at the click of a button only for the 

duration of the analysis. Once analysis is complete, the cluster 

is shut down. Data is decrypted on the fly as it streams from 

S3 to EMR clusters for analysis. Likewise, analysis results are 
encrypted on the fly before they get stored in S3. For each 

distinct set of collaborators, we currently set up 1) a secure 

bucket in S3 that stores all data relevant to that collaboration, 

and 2) a Virtual Private Cloud (VPC) – a secure, isolated 

sandbox environment to facilitate data analysis for that 

collaboration. The virtual workstation and EMR clusters for 

each collaborator are provisioned within the respective VPCs.  
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