
BigDataViewer

Visualization and Image Processing for Terabyte Data Sets

Tobias Pietzsch
1
, Stephan Saalfeld

2
, Stephan Preibisch

3
, Pavel Tomancak

1

1
Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

2
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

3
Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany

Abstract—The necessity to make large volumetric datasets

available for interactive visualization and analysis has been

widely recognized. However, existing solutions build upon

proprietary file formats requiring that data are copy-converted

before visualization, or use dedicated servers to generate

virtual slices that are transferred to client applications,

practically leading to insufficient frame rates for truly

interactive experience. We present BigDataViewer (BDV), an

easily accessible and extensible open source solution for

interactive visualization of very large volumes and time series

of volumes from both local and remote data sources.

Individual image stacks are arbitrarily arranged in global 3D

coordinate space, and can be displayed independently or as

color composite. The software renders arbitrarily oriented

virtual slices through global space, allowing smooth

navigation in multi-terabyte image datasets. BDV can be

easily extended to handle new data sources such as 3rd party

file formats or online data stores. It is re-usable as both

visualization frontend and data backend for novel annotation

and image processing tools.

I. Introduction

Advances in microscopy today allow live 3D imaging of

entire developing embryos with high spatial and temporal

resolution, promising new insights in developmental biology.

Lightsheet microscopes generate terabytes of data in a matter

of a few hours, and it is essential to be able to access and

handle these data efficiently. To address this issue, we

developed BigDataViewer (BDV), a re-slicing browser for

very large multiview image sequences [1]. It is available as a

Fiji [2] plugin and integrates seamlessly with Fiji’s Multiview

Reconstruction pipeline
1
.

BDV displays individual image volumes of a multiview,

multi-channel, time-lapse data set as transformed (registered)

slices in a common global 3D coordinate space. The viewer

renders an arbitrarily oriented virtual slice through that global

space. It either displays views independently or as color

composites. Brightness and color of each view can be adjusted

separately. An intuitive user interface allows free translation,

rotation, and zoom, as well as moving between timepoints.

1
 http://fiji.sc/Multiview-Reconstruction

Fig. 1: BigDataViewer loading and caching scheme.

(top) Data is stored as multi-resolution pyramid, chunked into

regular blocks. To render a slice (blue line), only a subset of

blocks is required. For lower resolutions, fewer blocks have to

be loaded, facilitating rapid rendering and immediate user

feedback. High-resolution data are loaded and filled in when

the user stops browsing momentarily. (bottom) Recently

loaded blocks are cached in RAM. For rendering the slice

indicated by the red line, only the red blocks need to be

loaded. Blue blocks are already cached from rendering the

blue slice before.

We achieve smooth navigation of multi-terabyte image

datasets by employing an intelligent loading and caching

scheme, illustrated in Figure 1. To render any virtual slice, only

a small fraction of the image data is relevant and needs to be

loaded into memory. Our caching scheme assumes that image

data is chunked into (small) regular 3D blocks and only loads

blocks that are required for the current slice. Further

acceleration is achieved by caching recently visited locations in

memory. Moreover, the BDV makes use of multi-resolution

data if available, where each image volume is stored in

multiple, successively reduced resolution levels. Multi-

resolution data avoids aliasing artifacts at zoomed-out views

and facilitates interactive browsing. Only the most relevant

scales for display are requested. Low-resolution data are loaded

rapidly, providing immediate user feedback, while high-

resolution detail is filled in subsequently. To facilitate this

access pattern, we proposed an HDF5-based file format that is

optimized for fast random access to very large data sets.

BDV is designed to be extensible and re-usable. Our file

format separates metadata (in XML) and storage of voxel data

(in HDF5), making it easy to adapt to other storage backends,

such as various file formats or online data services. There

ImgLib2

XML

HDF5

MetaData

CellCache

HDF5

Source
Source

Source Rendering

processing visualization

Fig. 2: The modular architecture of BigDataViewer.

already is support for the specialized file formats Imaris, KLB
2
,

Magellan [3], Zeiss Lightsheet Z.1, Slidebook 6
3
, as well as

any format that can be opened through Bioformats [4]. BDV

currently provides backends for the online data servers

CATMAID [5], Open Connectome [6], and DVID
4
 allowing to

browse massive electron microscopy (EM) datasets in

previously unaccessible orientations. Additionally, we

developed BigDataServer as part of BDV to make data in our

own file format accessible online.

Building on the generic image processing library

ImgLib2 [7], BigDataViewer has a modular architecture that

separates data access backend, caching infrastructure, and

visualization. This facilitates re-use of BDV components as a

visualization frontend and/or data backend in image analysis

and annotation tools. Section II describes BDV concepts and

architecture, in particular highlighting extensibility. In Section

III we discuss various applications of BDV in processing of

lightsheet microscopy data, semi-automatic tracking in

multiview sequences, interactive surface extraction, and

curation of neuron segmentation in EM volumes.

II. Software Architecture

A. Built on ImgLib2

BigDataViewer is built on the generic image processing

library ImgLib2. ImgLib2 allows clean modularization of BDV

into rendering frontend and data access backend. It provides

abstract interfaces between BDV modules, enabling the BDV

cache backend to encapsulate and hide implementation details

such as blocking and caching, exposing image volumes

through a standard interface. Moreover, it facilitates rendering

by lazily evaluated virtual coordinate and pixel value

transformations. ImgLib2 allows to express algorithms in a

way that abstracts from the data type, dimensionality, or

memory storage of the image data. For BDV we rely on the

following key features: virtualized pixel access, volatile pixel

types, as well as transparent, virtualized image extension,

interpolation, and coordinate transformations.

2
 Keller Lab Block format for lightsheet microscopy developed at Janelia

Research Campus (https://bitbucket.org/fernandoamat/keller-lab-block-
filetype)
3
 Intelligent Imaging Innovations format

4
 https://github.com/janelia-flyem/dvid/wiki

By virtualizing all pixel accesses, ImgLib2 decouples

access to images from the storage of image data. Among the

storage schemes provided by the library, the CellImg image

container represents images by splitting them into smaller

blocks (cells). We extend this functionality by loading and

caching cells on demand, while still exposing the same

interface as images that are completely held in memory. We

use Volatile pixel types to represent voxels as pairs of intensity

and validity. Validity in our case signals whether the intensity

value exists in memory or is still enqueued to be loaded. This

allows to implement a deferred loading scheme that provides

immediate feedback. ImgLib2 images can be backed by

transparent transformation into other images that are lazily

evaluated. Whether the underlying data lives in our cache-

backed images or in a standard memory array is irrelevant.

This is extremely convenient for our rendering algorithm that

operates under the assumption that all data is in memory all the

time.

B. Re-slicing Renderer

The BDV renderer takes a set of image volumes that are

registered into a common global space and displays an

arbitrary slice through that global space. For each rendered

pixel on the screen, the source voxels that contribute to it need

to be determined. For this, volumes are transformed into a

common global reference frame using their respective local-to-

global transformations (registrations). Then the viewer

transformation is applied to transform global coordinates into

the current viewer frame. The plane z = 0 of the viewer frame

coincides with the rendering canvas on the screen, such that

voxels contributing to screen pixel (x,y) are found at

coordinates (x,y,0). Voxel values are then converted from their

respective data type to RGB color space for display, and colors

contributed by different volumes blended to a final output

color. Note that all these transformations are virtualized and

lazily evaluated: Only once a pixel is accessed, the

transformation chain is reversed to access the corresponding

source data in the cache.

For volumes that are available at multiple resolutions, each

resolution level is registered individually into global space.

This provides flexibility to use data sources with varying

downsampling schemes. To decide which resolution level

should be used for a given volume, the optimal rendering

resolution is determined to best match source voxel size and

on-screen pixel size. We try to always render at the optimal

resolution level. However, to make optimal use of cached data,

we allow resolutions to stand in for each other. Pixels currently

missing in the optimal resolution level are replaced with data

from other levels, while the optimal level is loading.

C. Extensible Data Format

We developed a custom open source file format that is

optimized for fast random access at various scales. The file

format is built on the open standards HDF5 and XML to store

image volumes and metadata, respectively. Image volumes are

stored as HDF5 chunked multi-dimensional arrays at

successively reduced resolutions. HDF5 provides efficient

input and output, supports unlimited file sizes and has built-in

and extensible compression facilities.

The format is extensible in the following ways: The HDF5

file of the dataset can be replaced by alternative storage

backends, of which we provide several. Moreover, the XML

file of a dataset can be augmented with arbitrary additional

metadata. Third-party data backends and metadata extensions

are discovered automatically, using the SciJava
5
 framework.

D. Extensible Architecture

BDV has a modular architecture that separates data access,

caching, and visualization into cleanly delimited components,

illustrated in Figure 2. For Rendering we access data through

abstract Sources. A Source is a lightweight interface, providing

data through standard ImgLib2 constructs. The CellCache

triggers loading of data blocks and caches recently used blocks

in RAM. Requests to load data blocks are prioritized and

handled asynchronously through a pool of loader threads.

Rendering is completely shielded from these implementation

details. The complete dataset is exposed as ImgLib2 CellImg

images that can be treated as if all data were in memory.

BDV can be extended with arbitrary custom Sources. These

can be implemented on top of CellCache or build on entirely

different mechanisms. Custom vector graphics overlays can

display annotations on top of the rendered images. For external

processing, it is straightforward to programmatically access the

pixel data as ImgLib2 containers. Existing code for filtering

and segmentation will work without modification. In the next

section we discuss different applications that illustrate BDV’s

extension capabilities.

III. Applications

A. Multiview Reconstruction for Lightsheet Microscopy

BDV’s extensible data format integrates seamlessly with

Fiji’s Multiview Reconstruction plug-ins for lightsheet data

processing. The plug-in extends the BDV format with

additional metadata (e.g., locations of segmented fluorescent

beads) and data backends (e.g., Zeiss Lightsheet Z.1). It

employs BDV as a frontend to allow interactive control of

intermediate steps of the pipeline, see Figure 3. Individual

angles of a lightsheet microscopy dataset can be viewed before

and after registration [8]. Detected locations of fluorescent

beads and nuclei can be visualized, and registration accuracy

can be inspected in zoomed-in views. The results of a

multiview deconvolution [9] and other processing steps can be

incorporated into the data set and viewed in a common global

space.

B. Tracking in Multiview Datasets

The temporal and spatial resolution of lightsheet

microscopy combined with long time-lapses generates a torrent

of data that classical annotation tools cannot handle. MaMuT
6

(Massive Multiview Tracker) is a Fiji plug-in that addresses

5
 https://github.com/scijava/scijava-common/

6
 http://fiji.sc/MaMuT

Fig. 3: The Multiview Reconstruction Fiji plug-in.

Fig. 4: The MaMuT (Massive Multiview Tracker) Fiji plug-in.

this by providing an interactive tool for the visualization,

annotation, tracking and lineaging of very large, multiview

image datasets. MaMuT builds on TrackMate
7
, a Fiji plug-in

for single particle tracking, and uses BDV both as a data

backend and as a visualization frontend. It augments BDV with

custom overlays for visualization of tracked cells and

synchronization of multiple viewer windows. Moreover,

MaMuT comprises a lineage tree “trackscheme” window, and

provides simple lineage tree analysis tools. The MaMuT user

interface with multiple open viewer windows is shown in

Figure 4.

C. Interactive Surface Projection

BDV is well-suited as a visualization frontend and data

backend for custom image processing pipelines. In Figure 5,

we show a plug-in developed for semi-automatic surface

extraction in time-lapses of Drosophila melanogaster ovaries.

The objective is to project the basal side of the follicle

epithelium (where planar polarized actin filaments locate) in

order to track myosin dynamics. In BDV, the user roughly

marks the region of interest with a bounding box.

7
 http://fiji.sc/TrackMate

Fig. 5: Follicle epithelium projection tool.

In the indicated region, bright blobs are detected, which occur

mainly on the apical side of the epithelium. This is followed by

robustly fitting an ellipsoid surface. The user selects a

projection method (cylindrical or polar) as well as a minimal

and maximal distance from ellipsoid surface. The resulting

projections are then computed for each timepoint, and shown

as an ImageJ stack for further processing.

D. Visualization and Curation of EM Segmentations

BDV can directly access the online image services CATMAID

[5], Open Connectome [6], and DVID, making massive EM

datasets available in previously inaccessible orientations and

complementing fixed-orientation web-browser based

visualization. We are currently developing tools for

visualization and manual correction of automated segmentation

results. Similarly to the EM intensity data, the label fields

obtained through segmentation are huge and are made

accessible through online image services. In Figure 6, we show

segmentation labels visualized as ARGB colors and overlaid

on a FIB-SEM dataset of the adult Drosophila brain hosted by

the DVID service
8
. We store label fields in a multi-resolution

scheme where at coarse resolutions each voxel stores a multiset

of labels, i.e., a summary of all labels the voxel covers in the

full resolution data. Thanks to the abstraction provided by

ImgLib2, BDV handles such non-standard data types in the

same way as normal intensity values.

IV. Conclusion

The BDV is a flexible and extensible tool for the visualization,

processing, and annotation of arbitrarily sized datasets. It is

applicable to a variety of imaging data including lightsheet,

confocal, widefield, and electron microscopy data that can be

stored locally or remotely. It facilitates access to the data and

annotations through an intuitive user interface, and at the same

time allows programmatic access through ImgLib2 interfaces

and data structures. Several tools already use and extend BDV

to provide extensive reconstruction and annotation plug-ins as

well as support for various data sources.

8
 Data and segmentation labels were created by Janelia’s FlyEM project

(http://emdata.janelia.org/)

Fig. 6: Joint visualization of EM data and 3d segmentation.

Acknowledgment

We thank J. Tinevez (Institut Pasteur) for developing

MaMuT; A. Pavlopoulos, I. Henry, and the Janelia FlyEM

project team for providing data sets used in figures. C. Rueden

and M. Hiner for developing and maintaining the ImageJ2

infrastructure on which we rely for distributing the software.

S.P. was supported by the Human Frontier Science Program

(HFSP) fellowship LT000783/2012, MPI-CBG, Howard

Hughes Medical Institute (HHMI), and MDC. S.S. was

supported by HHMI and MPI-CBG. P.T. and T.P. were

supported by The European Research Council Community’s

Seventh Framework Program (FP7/2007-2013), grant

agreement 260746.

References

[1] T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak,

“BigDataViewer: visualization and processing for large

image data sets,” Nat Meth 12(6), 481–3, 2015.

[2] J. Schindelin et al., “Fiji: an open-source platform for

biological-image analysis,” Nat Meth 9(6), 676–82, 2012.

[3] H. Pinkard et al., “μMagellan: A flexible, open source

platform for high-level automation of high throughput

biological light microscopy,” in preparation.

[4] M. Linkert et al., “Metadata matters: access to image data

in the real world,” JCB, 189(5), 777–82, 2010.

[5] S. Saalfeld, A. Cardona, V. Hartenstein, and P.

Tomancak, “CATMAID: Collaborative annotation toolkit

for massive amounts of image data,” Bioinformatics

25(15), 1984–6, 2009.

[6] R. Burns et al., “The Open Connectome Project Data

Cluster: Scalable Analysis and Vision for High-

Throughput Neuroscience,” in SSDBM 25, art. 27, 2013.

[7] T. Pietzsch, S. Preibisch, P. Tomancak, and S. Saalfeld,

“ImgLib2—generic image processing in Java,”

Bioinformatics 28(22), 3009–11, 2012.

[8] S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak,

“Software for bead-based registration of selective plane

illumination microscopy data,” Nat Meth 7(6), 418-9,

2010.

[9] S. Preibisch, et. al, “Efficient Bayesian-based multiview

deconvolution,” Nat Meth 11(6), 645–8, 2014

