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Abstract—The necessity to make large volumetric datasets 

available for interactive visualization and analysis has been 

widely recognized. However, existing solutions build upon 

proprietary file formats requiring that data are copy-converted 

before visualization, or use dedicated servers to generate 

virtual slices that are transferred to client applications, 

practically leading to insufficient frame rates for truly 

interactive experience. We present BigDataViewer (BDV), an 

easily accessible and extensible open source solution for 

interactive visualization of very large volumes and time series 

of volumes from both local and remote data sources. 

Individual image stacks are arbitrarily arranged in global 3D 

coordinate space, and can be displayed independently or as 

color composite. The software renders arbitrarily oriented 

virtual slices through global space, allowing smooth 

navigation in multi-terabyte image datasets. BDV can be 

easily extended to handle new data sources such as 3rd party 

file formats or online data stores. It is re-usable as both 

visualization frontend and data backend for novel annotation 

and image processing tools. 

I. Introduction 

Advances in microscopy today allow live 3D imaging of 

entire developing embryos with high spatial and temporal 

resolution, promising new insights in developmental biology. 

Lightsheet microscopes generate terabytes of data in a matter 

of a few hours, and it is essential to be able to access and 

handle these data efficiently. To address this issue, we 

developed BigDataViewer (BDV), a re-slicing browser for 

very large multiview image sequences [1]. It is available as a 

Fiji [2] plugin and integrates seamlessly with Fiji’s Multiview 

Reconstruction pipeline
1
. 

BDV displays individual image volumes of a multiview, 

multi-channel, time-lapse data set as transformed (registered) 

slices in a common global 3D coordinate space. The viewer 

renders an arbitrarily oriented virtual slice through that global 

space. It either displays views independently or as color 

composites. Brightness and color of each view can be adjusted 

separately. An intuitive user interface allows free translation, 

rotation, and zoom, as well as moving between timepoints. 
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Fig. 1: BigDataViewer loading and caching scheme. 

(top) Data is stored as multi-resolution pyramid, chunked into 

regular blocks. To render a slice (blue line), only a subset of 

blocks is required. For lower resolutions, fewer blocks have to 

be loaded, facilitating rapid rendering and immediate user 

feedback. High-resolution data are loaded and filled in when 

the user stops browsing momentarily. (bottom) Recently 

loaded blocks are cached in RAM. For rendering the slice 

indicated by the red line, only the red blocks need to be 

loaded. Blue blocks are already cached from rendering the 

blue slice before. 

We achieve smooth navigation of multi-terabyte image 

datasets by employing an intelligent loading and caching 

scheme, illustrated in Figure 1. To render any virtual slice, only 

a small fraction of the image data is relevant and needs to be 

loaded into memory. Our caching scheme assumes that image 

data is chunked into (small) regular 3D blocks and only loads 

blocks that are required for the current slice. Further 

acceleration is achieved by caching recently visited locations in 

memory. Moreover, the BDV makes use of multi-resolution 

data if available, where each image volume is stored in 

multiple, successively reduced resolution levels. Multi-

resolution data avoids aliasing artifacts at zoomed-out views 

and facilitates interactive browsing. Only the most relevant 

scales for display are requested. Low-resolution data are loaded 

rapidly, providing immediate user feedback, while high-

resolution detail is filled in subsequently. To facilitate this 

access pattern, we proposed an HDF5-based file format that is 

optimized for fast random access to very large data sets. 

BDV is designed to be extensible and re-usable. Our file 

format separates metadata (in XML) and storage of voxel data 

(in HDF5), making it easy to adapt to other storage backends, 

such as various file formats or online data services. There  
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Fig. 2: The modular architecture of BigDataViewer. 

 

already is support for the specialized file formats Imaris, KLB
2
, 

Magellan [3], Zeiss Lightsheet Z.1, Slidebook 6
3
, as well as 

any format that can be opened through Bioformats [4]. BDV 

currently provides backends for the online data servers 

CATMAID [5], Open Connectome [6], and DVID
4
 allowing to 

browse massive electron microscopy (EM) datasets in 

previously unaccessible orientations. Additionally, we 

developed BigDataServer as part of BDV to make data in our 

own file format accessible online. 

Building on the generic image processing library 

ImgLib2 [7], BigDataViewer has a modular architecture that 

separates data access backend, caching infrastructure, and 

visualization. This facilitates re-use of BDV components as a 

visualization frontend and/or data backend in image analysis 

and annotation tools. Section II describes BDV concepts and 

architecture, in particular highlighting extensibility. In Section 

III we discuss various applications of BDV in processing of 

lightsheet microscopy data, semi-automatic tracking in 

multiview sequences, interactive surface extraction, and 

curation of neuron segmentation in EM volumes. 

II. Software Architecture 

A. Built on ImgLib2 

BigDataViewer is built on the generic image processing 

library ImgLib2. ImgLib2 allows clean modularization of BDV 

into rendering frontend and data access backend. It provides 

abstract interfaces between BDV modules, enabling the BDV 

cache backend to encapsulate and hide implementation details 

such as blocking and caching, exposing image volumes 

through a standard interface. Moreover, it facilitates rendering 

by lazily evaluated virtual coordinate and pixel value 

transformations. ImgLib2 allows to express algorithms in a 

way that abstracts from the data type, dimensionality, or 

memory storage of the image data. For BDV we rely on the 

following key features: virtualized pixel access, volatile pixel 

types, as well as transparent, virtualized image extension, 

interpolation, and coordinate transformations.  
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By virtualizing all pixel accesses, ImgLib2 decouples 

access to images from the storage of image data. Among the 

storage schemes provided by the library, the CellImg image 

container represents images by splitting them into smaller 

blocks (cells). We extend this functionality by loading and 

caching cells on demand, while still exposing the same 

interface as images that are completely held in memory. We 

use Volatile pixel types to represent voxels as pairs of intensity 

and validity. Validity in our case signals whether the intensity 

value exists in memory or is still enqueued to be loaded. This 

allows to implement a deferred loading scheme that provides 

immediate feedback. ImgLib2 images can be backed by 

transparent transformation into other images that are lazily 

evaluated. Whether the underlying data lives in our cache-

backed images or in a standard memory array is irrelevant. 

This is extremely convenient for our rendering algorithm that 

operates under the assumption that all data is in memory all the 

time. 

B. Re-slicing Renderer 

The BDV renderer takes a set of image volumes that are 

registered into a common global space and displays an 

arbitrary slice through that global space. For each rendered 

pixel on the screen, the source voxels that contribute to it need 

to be determined. For this, volumes are transformed into a 

common global reference frame using their respective local-to-

global transformations (registrations). Then the viewer 

transformation is applied to transform global coordinates into 

the current viewer frame. The plane z = 0 of the viewer frame 

coincides with the rendering canvas on the screen, such that 

voxels contributing to screen pixel (x,y) are found at 

coordinates (x,y,0). Voxel values are then converted from their 

respective data type to RGB color space for display, and colors 

contributed by different volumes blended to a final output 

color. Note that all these transformations are virtualized and 

lazily evaluated: Only once a pixel is accessed, the 

transformation chain is reversed to access the corresponding 

source data in the cache. 

For volumes that are available at multiple resolutions, each 

resolution level is registered individually into global space. 

This provides flexibility to use data sources with varying 

downsampling schemes. To decide which resolution level 

should be used for a given volume, the optimal rendering 

resolution is determined to best match source voxel size and 

on-screen pixel size. We try to always render at the optimal 

resolution level. However, to make optimal use of cached data, 

we allow resolutions to stand in for each other. Pixels currently 

missing in the optimal resolution level are replaced with data 

from other levels, while the optimal level is loading. 

C. Extensible Data Format 

We developed a custom open source file format that is 

optimized for fast random access at various scales. The file 

format is built on the open standards HDF5 and XML to store 

image volumes and metadata, respectively. Image volumes are 

stored as HDF5 chunked multi-dimensional arrays at 

successively reduced resolutions. HDF5 provides efficient 



input and output, supports unlimited file sizes and has built-in 

and extensible compression facilities. 

The format is extensible in the following ways: The HDF5 

file of the dataset can be replaced by alternative storage 

backends, of which we provide several. Moreover, the XML 

file of a dataset can be augmented with arbitrary additional 

metadata. Third-party data backends and metadata extensions 

are discovered automatically, using the SciJava
5
 framework.  

D. Extensible Architecture 

BDV has a modular architecture that separates data access, 

caching, and visualization into cleanly delimited components, 

illustrated in Figure 2. For Rendering we access data through 

abstract Sources. A Source is a lightweight interface, providing 

data through standard ImgLib2 constructs. The CellCache 

triggers loading of data blocks and caches recently used blocks 

in RAM. Requests to load data blocks are prioritized and 

handled asynchronously through a pool of loader threads. 

Rendering is completely shielded from these implementation 

details. The complete dataset is exposed as ImgLib2 CellImg 

images that can be treated as if all data were in memory. 

BDV can be extended with arbitrary custom Sources. These 

can be implemented on top of CellCache or build on entirely 

different mechanisms. Custom vector graphics overlays can 

display annotations on top of the rendered images. For external 

processing, it is straightforward to programmatically access the 

pixel data as ImgLib2 containers. Existing code for filtering 

and segmentation will work without modification. In the next 

section we discuss different applications that illustrate BDV’s 

extension capabilities. 

III. Applications 

A. Multiview Reconstruction for Lightsheet Microscopy 

BDV’s extensible data format integrates seamlessly with 

Fiji’s Multiview Reconstruction plug-ins for lightsheet data 

processing. The plug-in extends the BDV format with 

additional metadata (e.g., locations of segmented fluorescent 

beads) and data backends (e.g., Zeiss Lightsheet Z.1). It 

employs BDV as a frontend to allow interactive control of 

intermediate steps of the pipeline, see Figure 3. Individual 

angles of a lightsheet microscopy dataset can be viewed before 

and after registration [8]. Detected locations of fluorescent 

beads and nuclei can be visualized, and registration accuracy 

can be inspected in zoomed-in views. The results of a 

multiview deconvolution [9] and other processing steps can be 

incorporated into the data set and viewed in a common global 

space. 

B. Tracking in Multiview Datasets 

The temporal and spatial resolution of lightsheet 

microscopy combined with long time-lapses generates a torrent 

of data that classical annotation tools cannot handle. MaMuT
6
 

(Massive Multiview Tracker) is a Fiji plug-in that addresses  
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Fig. 3: The Multiview Reconstruction Fiji plug-in. 

 

 
Fig. 4: The MaMuT (Massive Multiview Tracker) Fiji plug-in. 

 

this by providing an interactive tool for the visualization, 

annotation, tracking and lineaging of very large, multiview 

image datasets. MaMuT builds on TrackMate
7
, a Fiji plug-in 

for single particle tracking, and uses BDV both as a data 

backend and as a visualization frontend. It augments BDV with 

custom overlays for visualization of tracked cells and 

synchronization of multiple viewer windows. Moreover, 

MaMuT comprises a lineage tree “trackscheme” window, and 

provides simple lineage tree analysis tools. The MaMuT user 

interface with multiple open viewer windows is shown in 

Figure 4. 

C. Interactive Surface Projection 

BDV is well-suited as a visualization frontend and data 

backend for custom image processing pipelines. In Figure 5, 

we show a plug-in developed for semi-automatic surface 

extraction in time-lapses of Drosophila melanogaster ovaries. 

The objective is to project the basal side of the follicle  

epithelium (where planar polarized actin filaments locate) in 

order to track myosin dynamics. In BDV, the user roughly 

marks the region of interest with a bounding box.  
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Fig. 5: Follicle epithelium projection tool. 

 

In the indicated region, bright blobs are detected, which occur 

mainly on the apical side of the epithelium. This is followed by 

robustly fitting an ellipsoid surface. The user selects a 

projection method (cylindrical or polar) as well as a minimal 

and maximal distance from ellipsoid surface. The resulting 

projections are then computed for each timepoint, and shown 

as an ImageJ stack for further processing. 

D. Visualization and Curation of EM Segmentations 

BDV can directly access the online image services CATMAID 

[5], Open Connectome [6], and DVID, making massive EM 

datasets available in previously inaccessible orientations and 

complementing fixed-orientation web-browser based 

visualization. We are currently developing tools for 

visualization and manual correction of automated segmentation 

results. Similarly to the EM intensity data, the label fields 

obtained through segmentation are huge and are made 

accessible through online image services. In Figure 6, we show 

segmentation labels visualized as ARGB colors and overlaid 

on a FIB-SEM dataset of the adult Drosophila brain hosted by 

the DVID service
8
. We store label fields in a multi-resolution 

scheme where at coarse resolutions each voxel stores a multiset 

of labels, i.e., a summary of all labels the voxel covers in the 

full resolution data. Thanks to the abstraction provided by 

ImgLib2, BDV handles such non-standard data types in the 

same way as normal intensity values. 

IV. Conclusion 

The BDV is a flexible and extensible tool for the visualization, 

processing, and annotation of arbitrarily sized datasets. It is 

applicable to a variety of imaging data including lightsheet, 

confocal, widefield, and electron microscopy data that can be 

stored locally or remotely. It facilitates access to the data and 

annotations through an intuitive user interface, and at the same 

time allows programmatic access through ImgLib2 interfaces 

and data structures. Several tools already use and extend BDV 

to provide extensive reconstruction and annotation plug-ins as 

well as support for various data sources. 
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Fig. 6: Joint visualization of EM data and 3d segmentation. 
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