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Abstract— Cell shape has been demonstrated to be closely 

related to stem cell response and function in biomaterial 

environments. However, cell shape phenotyping in biomaterials 

with bioimage data is complicated by heterogeneous cell 

populations, microenvironment heterogeneity, and multi-

parametric definitions of cell morphology. To associate cell 

morphology with cell-material interactions, we developed an 

analysis framework based on support vector machines (SVMs) 

with a multi-cell level “supercell” averaging method to build 

classifier boundaries that identify and predict 

microenvironment-driven morphology differences of cell 

populations. The “supercell” method reduces the influence of 

variability in single-cell morphology on the classification of cell 

populations with SVMs. We compared morphologies of human 

bone marrow stromal cells (hBMSCs) cultured on nanofiber 

scaffolds to those on flat films after one day of culture. Smaller 

cell size and more dendritic shape patterns were the major 

morphological responses of hBMSCs to nanofiber scaffolds.  

Index Terms— Cell morphology, biomaterial, support vector 

machine, supercell. 

I. INTRODUCTION 

Cell morphology may be a valuable descriptor of cell 

behaviors, phenotypes and genotypes in different biological 

procedures such as immune response, cancer progress and 

differentiation [1-5]. High-throughput single-cell bioimaging 

has enabled the quantification of heterogeneous cell population 

with many cell shape features that are increasingly difficult to 

interpret. Innovative analytical tools must be developed to 

identify and combine key cell shape features correlated with 

biological outcome while accounting for both multi-parametric 

complexity and biological heterogeneity. 

In this study, we investigated the morphology of human 

bone marrow stromal cells (hBMSCs) in nanofiber scaffolds 

compared to that of cells on flat films. Nanofiber scaffold 

structures have been demonstrated to uniquely induce 

osteogenic differentiation of human bone marrow stromal cells 

(hBMSCs) and alter cell shape, similarly to chemically induced 

differentiation [6]. However, only a few individual cell shape 

features have been investigated for their association with 

differentiation, and cell morphologies vary greatly across a 

nanofiber scaffold. To address this limitation, we have 

developed computational tools based on Support Vector 

Machines (SVMs) to identify cell morphological features 

associated with nanofiber [7] in a wide range of global or local 

shape metrics. Moreover, the resulting SVM classifiers 

provided a selection of reduced shape metrics to quantify 

hBMSC shape phenotypes in specific microenvironments. 

However, large variability in cell shape led to highly 

overlapping cell populations. In order to improve the training 

and prediction accuracies of the SVM classifiers, a method of 

averaging shape metrics over a small subset of randomly 

selected cells known as “supercell averaging” was 

implemented [8]. The random sampling used to generate 

supercells can introduce uncertainty in the SVM classifier. 

Therefore, by introducing a subsampling validation procedure, 

we studied the sample size as another important limiting factor 

in the construction of single-cell or supercell phenotypes and 

its effects on the tradeoff between prediction accuracy, 

supercell averaging and uncertainty in the classifier. 

II. MATERIAL AND METHODS 

A. Sample Preparation, Cell Culture and Imaging 

Poly(-caprolactone) (PCL) films (SC) were generated with 

spin-coating and PCL nanofiber scaffolds (NF) were fabricated 

by electrospinning onto tissue culture polystyrene discs. 

hBMSCs were seeded and cultured on the PCL films and PCL 

nanofiber scaffolds for 24 hours (37° C, 5% CO2), with or 

without oseteogenic supplement (OS) of dexamethasone (10 

nmol/L), β-glycerophosphate (20 mmol/L) and ascorbic acid 

(0.05 mmol/L). Cells were then fixed with 3.7% formaldehyde 

and permeabilized with 0.1% Triton-X, then stained with 

Alexa Fluor 546 phalloidin (0.33M )) for actin and 4',6-

diamidino-2-phenylindole (DAPI, 0.03mM )  for nucleus. 

High-resolution 3-D z-stack images of hBMSCs were taken 

with a confocal microscope (Leica SP5) with 63x water 

immersion objective. A total of 121 hBMSCs in NF, 114 

hBMSCs on SC, 125 hBMSCs in NF+OS and 116 hBMSCs in 

SC+OS were imaged. 
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B. Cell Shape Analysis 

Max projections of the z stacks were processed with snake 

algorithm [9] to define cell outlines with sub-pixel resolution in 

MATLAB (Fig. 1. a). 22 Shape metrics were calculated with 

the outline of each hBMSC and normalized with z-score (Fig. 

1.b). For the cell population of each culture condition, 120 

supercells were generated by averaging the shape metrics over 

a certain number (supercell size) of randomly picked original 

single cells with replacement. SVMs classifiers with linear 

kernel (implemented with kernlab package in R) were trained 

on different random supercell data sets for 100 times in 

pairwise comparisons. The final classifier hyperplane 

orientation was defined by the average normal vector 𝐧̅ over all 

normal vectors n of each machine learning repeat, i.e.  


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                             

The classifier hyperplane stability was then measured as the 

average cosine function <cos> (inner product) of the angle  

between the instant normal vector of each machine learning 

procedure and the average classifier normal vector. 

nncos
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Shape metrics showing statistically significant differences 

(p <0.01) between micro-environments, were preselected based 

on 1-way ANOVA and Tukey multi-comparison test. Then, all 

combinations of 3 shape metrics were used to build different 

metric spaces for the subsequent SVM analysis. The 

combination of 3 shape metrics with the highest training 

classification accuracy among those that satisfy a certain 

classifier hyperplane stability criterion was finally selected to 

represent the population morphology difference. 

With the selected shape metrics, a subsampling validation 

procedure was employed to decide which training data size and 

supercell size are appropriate to build the classifier hyperplane. 

In this procedure, a training subsample of a certain size was 

randomly picked from the original cell population and then 

randomly generated 120 supercells of a certain supercell size. 

The SVM/supercell paradigm was applied to these data sets to 

train a classifier hyperplane. 120 supercells of the same 

supercell size were also randomly made with the remaining 

sample to form a test subsample. The hyperplane achieved with 

the training subsample was utilized to predict the test 

subsample. This subsampling validation procedure was 

repeated for 200 times for a certain training sample size and 

supercell size. The classifier hyperplane stability calculated 

with Eq. 2. Both prediction accuracy and the classifier 

hyperplane stability were taken into account to decide the 

appropriate training sample size and supercell size. 

 

III. RESULTS 

To distinguish morphologies of hBMSCs in NF and SC, the 

optimal combination of 3 shape metrics were identified as 

minor axis length, solidity and mean negative curvature 

(supercell size = 5, hyperplane stability threshold <cos> > 

0.99). The accuracy of the classifier training is 99.3%±0.6% 

(Fig. 2.a). The average normal vector of the classifier 

hyperplane is (-0.86±0.04, -0.43±0.06, 0.24±0.08). 

 

 
Fig. 1. Quantification of cell shapes in different microenvironment (NF 
and SC with or without OS). (a) Outlines of hBMSCs were obtained 

with snake algorithm which allowed calculation of local curvature. 

Boundary regions were colored differently according to local 
curvatures. (b) 22 metrics were quantified to describe hBMSC shapes 

and sorted into 3 categories about different aspects of cell shape. 12 

metrics were obtained with the snake outlines (without asterisks) and 

10 metrics were obtained from branch analysis (with asterisks). 

NF SC

NF+OS

SC+OS

Po
si

ti
ve

 C
u

rv
at

u
re

N
eg

at
iv

e 
C

u
rv

at
u

re

a

b



In a subsampling validation procedure to test the classifier 

built with the selected shape metric combination of minor axis 

length, solidity, and mean negative curvature, both the training 

subsample size and the supercell size to build the classifier 

varied. The classifier hyperplane stability was improved with 

increasing number of cells in the training set to build the 

classifier. The classifier stability threshold of <cos> > 0.99 

was still assumed to define stable classifier hyperplanes. In Fig. 

2.b, classifier hyperplane stability and prediction accuracy 

were combined to quantify effect of data size and supercell size 

on the classifier for selected shape metrics. Figure 2.b showed 

that morphology difference should be quantified with 

appropriate selections of supercell size and training data size 

and supports the efficacy to train a stable classifier hyperplane 

with the selected shape metrics at supercell size of 5 and 

current data size (121 hBMSCs of NF and 114 hBMSCs of 

SC). 

IV. DISCLAIMER 

Certain commercial equipment, instruments, or materials 

are identified in this paper in order to specify the 

experimental procedure adequately. Such identification is not 

intended to imply recommendation or endorsement by the 

National Institute of Standards and Technology, nor is it 

intended to imply that the materials or equipment identified 

are necessarily the best available for the purpose. 

V. ACKNOWLEDGMENT 

WL and DC acknowledge NIST grant 70NANB14H282 

and WL and JC acknowledge NSF grant PHY120596. 

 

 

VI. REFERENCES 

[1]  R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, 

and C. S. Chen, "Cell Shape, Cytoskeletal Tension, and 

RhoA Regulate Stem Cell Lineage Commitment," 

Developmental Cell, 2004. 6(4): p. 483-495. 

[2]  K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, 

"Geometric cues for directing the differentiation of 

mesenchymal stem cells," Proc Natl Acad Sci U S A, 

2010. 107(11): p. 4872-7. 

[3]  M. D. Treiser, E. H. Yang, S. Gordonov, D. M. Cohen, I. 

P. Androulakis, J. Kohn, et al., "Cytoskeleton-based 

forecasting of stem cell lineage fates," Proc Natl Acad 

Sci U S A, 2010. 107(2): p. 610-5. 

[4]  H. V. Unadkat, N. Groen, J. Doorn, B. Fischer, A. M. 

Barradas, M. Hulsman, et al., "High content imaging in 

the screening of biomaterial-induced MSC behavior," 

Biomaterials, 2013. 34(5): p. 1498-505. 

[5]  T. L. Downing, J. Soto, C. Morez, T. Houssin, A. Fritz, 

F. Yuan, et al., "Biophysical regulation of epigenetic 

state and cell reprogramming," Nat Mater, 2013. 12(12): 

p. 1154-62. 

[6]  G. Kumar, C. K. Tison, K. Chatterjee, P. S. Pine, J. H. 

McDaniel, M. L. Salit, et al., "The determination of stem 

cell fate by 3D scaffold structures through the control of 

cell shape," Biomaterials, 2011. 32(35): p. 9188-96. 

[7]  N. Cristianini and J. Shawe-Taylor, "An introduction to 

support vector machines : and other kernel-based 

learning methods." 2000, Cambridge, U.K. ; New York: 

Cambridge University Press. xiii, 189 p. 

[8]  J. Candia, R. Maunu, M. Driscoll, A. Biancotto, P. 

Dagur, J. P. McCoy, Jr., et al., "From cellular 

characteristics to disease diagnosis: uncovering 

phenotypes with supercells," PLoS Comput Biol, 2013. 

9(9): p. e1003215. 

[9]  X. Chenyang and J. L. Prince, "Snakes, shapes, and 

gradient vector flow," Image Processing, IEEE 

Transactions on, 1998. 7(3): p. 359-369. 

 

 
Fig. 2. Results of SVM analysis and associated subsampling test of 

selecting 3 shape metrics to compare morphological difference of 
hBMSC populations of NF and SC. (a) Training classification accuracy 

of the selected shape metric combination in SVM training with supercell 

implementation. All error bars represent standard deviation. 
 (b) Prediction accuracy of the classifier hyperplanes in the subsampling 

validation when the built classifiers were tested with the rest of the total 

sample at different supercell sizes. The dark region represented 
combinations of training data size and supercell size causing unstable 

classifier hyperplane. In the stable region, combinations of the training 

data size and supercell size were colored according to the prediction 
accuracy.  
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