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For many problems in biology and medicine, one needs
to quantitatively compare shapes of biological objects, e.g.,
organ boundaries in computational anatomy, cell or colony
morphology in cytometry. One might have large databases
of such shapes, and may want to cluster, classify or com-
pare such elements. To be able to perform such analyses,
one needs the notion of shape distance quantifying dissim-
ilarity of such entities. In this work, we focus on the elas-
tic shape distance of Srivastava et al. [3] for closed pla-
nar curves. This provides a flexible and intuitive geodesic
distance measure between curve shapes, invariant to trans-
lation, scaling, rotation and reparametrization. Computing
this distance, however, is computationally expensive. The
original algorithm proposed in [3] using dynamic program-
ming (DP) runs in O(N3) time, N the number of nodes per
curve. In this work, we propose a new fast iterative algo-
rithm to compute the elastic shape distance between shapes
of closed planar curves [1, 2]. The asymptotic time com-
plexity of our algorithm is roughly O(N2). However, in our
experiments, we have observed a subquadratic trend with
running times depending on the type of curve data.

Mathematically, the shape distance computation is for-
mulated as a global minimization over triplets of starting
points t0 (on the curve), rotations R and reparametriza-
tions γ(t). Given planar closed curves β1 and β2 of unit
length, and their shape functions qi(t) = β̇i(t)/‖β̇i(t)‖1/2
the shape distance between them corresponds to the mini-
mum of the following energy:
E(t0, θ, γ) ≡

∫ 1

0
‖q1(t)−

√
γ̇(t)R(θ)q2(t0 + γ(t))‖2dt.

We propose to minimize this using an alternating ap-
proach: We fix γ and optimize the energy with respect
to t0, θ (in O(N logN) time using FFT-based algorithm
from [2]). Then with the optimal t0, θ fixed in the en-
ergy, we optimize with respect to γ (in O(kN) time with
nonlinear constrained optimization, k is the number of it-
erations [1]). We alternate between the two steps with
K the number of outer iterations until convergence. The
algorithm also involves a O(εN2) initialization with our
fast DP. Thus the overall computational cost of our algo-
rithm is O(εN2 +K(N logN + kN)).

We present some of our results demonstrating efficiency

gains of our new algorithm compared to the original algo-
rithm in [3] (see the papers [1, 2] for all our results). We
test our algorithm on synthetic curves, cell boundary curves,
and subsets of Leaf and MPEG7 shape data sets. Our first
test is with a synthetic curve to show scalability with re-
spect to N . We change the starting point of a limaçon,
rotate it, and apply a synthetic reparameterization to it to
obtain a second version of it, thus of the same shape and
zero distance. The computational cost of the original algo-
rithm becomes very expensive as N increases beyond 256,
whereas our new algorithm yields reasonable cost for all N
(see Table 1). Finally, we compute the pairwise distance
matrix of all the test shape data sets (with N = 256). Our
algorithm is an order of magnitude faster (see Table 2), even
faster for finer samplings, e.g.,N = 512, 1024.
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# of nodes 64 128 256 512 1024
Original Algorithm 1.4 sec 11 92 735 5917
New Algorithm 4 11 19 50 89

Table 1. Timings for computation of the theoretical zero distance
between two versions of the same limaçon.

Synthetic Cells Leaves MPEG7
Matrix Size 62 = 36 102 = 100 752K 1002

Orig. Algo. 1 hr 2.5 hrs 129 hrs 240 hrs
New Algo. 12 min 4.5 min 12.5 hrs 38.5 hrs

Table 2. Timings for distance matrices obtained by computing
shape distances for all curve pairs (N = 256).
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