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Abstract— New microscope technologies are enabling the 

acquisition of large volumes of live cell image data. Accurate 

temporal object tracking is required to facilitate the analysis of 

this data. One principal component of cell tracking is 

correspondence, matching cells between consecutive frames. This 

component can be enhanced by incorporating shape metrics into 

the tracking model. The measure of shape similarity between two 

objects can be accomplished using Fourier descriptors, derived 

from a one dimensional shape signature. The type of one 

dimensional shape signature affects the quality of the resulting 

Fourier descriptors when dealing with noisy object boundaries. 

We present a comparison of several different sampling methods 

for converting a two dimensional object boundary into a one 

dimensional shape signature suitable for computing Fourier 

descriptors. The Fourier descriptors are evaluated on two shape 

datasets with ground truth and used as a similarity feature for 

performing object tracking on a time-lapse series of NIH 3T3 

cells. Experimental results show that for noisy object boundaries, 

Fourier descriptors constructed from the R-Theta Binning 

centroid distance shape signature presented here perform better 

than Fourier descriptors constructed from the other evaluated 

shape signatures. 

Index Terms—Fourier Descriptor, Shape Analysis 

I. INTRODUCTION 

Object shape is a familiar aspect of the human visual 

perception system. Shape information is often valuable as a 

component of object tracking systems, both as a means of 

improving the accuracy of object trajectories as well as a filter 

for creating a subset of objects to study. This work is motivated 

by the inclusion of a cell shape feature descriptor in the cost 

function of an overlap-based cell tracker which operates on a 

time-lapse series of live cell images [1]–[3]. Shape descriptors 

are usually extracted using computer algorithms that convert 

object geometrical pixel information into one dimensional 

numerical vectors. Figure 1 shows a simplified workflow from 

raw cell images to Fourier descriptors. The raw cell images (a) 

are segmented to produce a mask (b-c) from which a cell 

boundary is extracted (d). The boundary is converted into a 1D 

shape signature (e) from which Fourier descriptors (f) are 

constructed. 

Fourier descriptors (FD) are often used in the literature due 

to their invariance to translation, rotation, and scaling. Two 

surveys by Loncaric [1] and by Zhang and Lu [2] present shape 

analysis techniques including FD. Hu and Li present a novel 

shape signature and compare the performance of FD based on 

different shape signatures [3]. Zhang and Lu evaluate several 

methods of constructing FD from shape signatures and 

conclude that shape signatures based on centroid distance are 

optimal for shape representation [4]. In [5] Zhang and Lu 

evaluate an expanded pool of shape signatures and confirm 

their prior conclusions on centroid distance shape signatures.  

From the literature listed above, we will use Fourier 

descriptors constructed from centroid distance shape 

signatures for similarity measurement. However, cell images 

present a high uncertainty on the boundary location as 

discussed in Dima [6]. This translates into noisy boundary 

pixel locations that can affect accuracy of shape descriptors. In 

order to address this problem we compared several boundary 

sampling techniques with regard to their ability to reduce 

noise and increase the accuracy of shape metric comparison in 

cellular images.  

The rest of this paper is organized as follows: Section II 

introduces the cell tracking application dataset. Section III 

covers the definition of centroid distance and the boundary 

sampling methods. Section IV covers the construction of FD 

from 1D shape signatures. Section V details the methodology 

used to evaluate the FD. Section VI discusses the evaluation 

results. 

II. APPLICATION DATASET 

The cell tracking application dataset consists of live 

National Institutes of Health (NIH) 3T3 cells imaged in phase 

 
Figure 1: A simplified workflow from raw images to Fourier descriptors. (a) 

NIH 3T3 cells raw image at time point 238, (b) segmented image with 
exemplar cell circled, (c) exemplar cell mask, (d) cell boundary, (e) extracted 

shape signature, (f) Fourier descriptor. 



contrast at 15 minute intervals; see [7] for more details. To 

visually demonstrate shape signatures, an informative exemplar 

cell was selected from the last time point in the NIH 3T3 

dataset. The grayscale image of the NIH 3T3 cells is shown in 

Figure 1 (a), next to the corresponding segmented mask with 

the exemplar cell circled (b), and an enlarged view of the 

exemplar cell (c). 

III. SHAPE SIGNATURE CONSTRUCTION 

From Figure 1 image segmentation converts the input 

image into a set of 8-connected pixels forming regions (cells). 

Boundary pixels can be extracted from each region as an 

ordered sequence of pixel locations. This set of 2D boundary 

pixel locations is then converted into a 1D vector called a 

shape signature using the centroid distance function described 

below. The shape signature is sub-sampled to reduce noise and 

then converted into a set of Fourier descriptors. 

A. Centroid Distance Function 

The centroid distance function is used to convert a set of 

2D pixel locations into a 1D vector from which Fourier 

descriptors are computed. The centroid distance function, 

shown in Equation 1, computes the Euclidian distance of each 

boundary pixel with coordinates (𝑥𝑖 , 𝑦𝑖) to the centroid of that 

object with coordinates (𝑥̅, 𝑦̅). 

𝐶𝐷𝑖 = √(𝑥𝑖 − 𝑥̅)2 + (𝑦𝑖 − 𝑦̅)2 (1) 

where i = 1,.., 𝑁𝑏, 𝑁𝑏 is the number of boundary pixels in the 

segmented object. The centroid of a segmented object, 

Equation 2, is defined as the average of the object’s pixel 

locations, where 𝑁 is the total number of pixels in the 

segmented object. 
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Shifting an object’s coordinate system to its centroid makes the 

shape representation invariant to translation. The next section 

demonstrates how to construct the shape signatures. 

B. Boundary Sampling 

We explored three methods for sampling the boundary 

pixels: (1) Every Pixel, (2) Interpolate N Points, and (3) R-

Theta Binning. The first two methods require a list of boundary 

pixels ordered using a boundary tracing; like the Moore 

algorithm [8] which sorts the boundary pixels in a clockwise or 

counter clockwise order. The last method, R-Theta Binning, 

avoids the boundary tracing by sorting the pixel locations 

directly. 

1) Every Pixel (EPsig) 

A simple method for sampling the boundary pixels is to 

take every pixel on the boundary without omitting any 

information or sub-sampling.  

2) Interpolate N Points (INPsig) 

This shape signature creates a set of 𝑁 points interpolated 

from the 1D centroid distance function. The collection of 

interpolation methods tested includes nearest neighbor, linear, 

cubic, and spline. The number of sample points 𝑁 is adjustable.  

3) R-Theta Binning (RTBsig) 

This shape signature was created to avoid a perceived 

pitfall in the previous methods, the distortion of object shape in 

polar coordinates. Since the purpose of the shape signature is to 

create a periodic 1D function as input for a Fourier transform, 

the effective shape is implicitly represented by polar 

coordinates. RTBsig is created by converting the edge pixels 

(𝑥𝑖 , 𝑦𝑖) into polar coordinates (𝑟𝑖 , 𝜃𝑖) and sorting them by 

angle (𝜃𝑖). This 1D function is then binned into 𝑁 bins to 

produce a shape signature containing 𝑁 sample points. The 

maximum value within a bin is considered the value of that bin. 

For bins without a value, the nearest non-empty bin value is 

used.  

IV. FOURIER DESCRIPTOR CONSTRUCTION 

The conversion of a shape signature (1D vector of 

distances) into a set of Fourier descriptors starts with 

performing a discrete Fourier transform on the shape signature. 

This produces a vector of Fourier coefficients that can be 

normalized to construct Fourier descriptors. The Fourier 

transform of the shape signature 𝑠(𝑘), shown in Equation 3, 

produces Fourier coefficients 𝐹(𝑛) with the Fourier coefficient 

index 𝑛 = 0, … , 𝑁 − 1 as given by: 
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Rotational invariance of the Fourier coefficients can be 

achieved by ignoring phase information and only considering 

magnitude values, 𝐹(𝑛) =  |𝐹(𝑛)|. In ignoring phase 

information, the Fourier descriptors are symmetric so only the 

first half are kept, 𝐹(0) … 𝐹(
𝑁

2
). Size invariance is achieved by 

normalizing the Fourier descriptors with respect to the 

magnitude of the DC component, 𝐹(𝑛) = 𝐹(𝑛)/|𝐹(0)|. By 

definition, the first normalized descriptor 
𝐹(0)

𝐹(0)
 will be equal to 1 

and is ignored. Thus the Fourier coefficients have been 

transformed into Fourier descriptors, shown in Equation 4, 

having been made invariant to translation, rotation, and scale. 
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Low order Fourier descriptors contain information about an 

object’s general shape while higher order Fourier descriptors 

contain more detailed information. Generally the first few 

Fourier descriptors are sufficient to capture overall object 

shape. The literature survey suggests that the first 15 

descriptors are sufficient, so descriptors beyond that are 

discarded [2], [4], [5]. 

V. EVALUATION METHODOLOGY 

To evaluate FD performance when constructed from 

different shape signatures we used the precision and recall 

metrics on two datasets with ground truth. The MPEG-7 CE 

Shape-1 Part B shape dataset [9] and a Vehicle Silhouettes 

dataset [10]. The images in the MPEG-7 dataset are grouped 

into 70 classes of perceptually similar objects and the images in 

the Vehicle Silhouettes dataset are grouped into 4 classes. 



Datasets with ground truth shape classification enable the 

comparison of the FD shape classification with the ground 

truth shape classification. To evaluate FD performance, 

precision-recall curves are generated for each evaluated shape 

signature. Precision is the fraction of retrieved records that are 

relevant and recall is the fraction of relevant records that are 

retrieved. Given the set of relevant records 𝑅 and the set of all 

records retrieved 𝑆, Equation 5 defines Precision and Recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅, 𝑆) =
|𝑅 ∩ 𝑆|

|𝑆|
 𝑅𝑒𝑐𝑎𝑙𝑙(𝑅, 𝑆) =  

|𝑅 ∩  𝑆|

|𝑅|
 (5) 

To generate the precision and recall data, each shape in the 

dataset was queried against the remainder of the dataset. The 

similarity between two shapes is computed as the Euclidean 

distance between the respective two Fourier descriptors. The 

relevant records are the other members of the queries ground 

truth class. For this evaluation the number of RTBsig bins 

(boundary sample points) is set 360, or one sample per degree 

in the polar coordinate representation. This value is selected by 

exploring its effect on FD precision and recall in the following 

section. 

In addition to validating the Fourier descriptors on ground 

truth datasets, a visual evaluation is performed using the time-

lapse NIH 3T3 dataset and a cell tracking application which 

mimics using the cell shape feature as part of the cost function 

to determine cell correspondence between time points.  

VI. RESULTS 

This section is divided in two parts: (1) precision and recall 

results on the two datasets with ground truth classification and 

(2) visual evaluation of NIH 3T3 cell association tracking 

application. 

A. Datasets with Ground Truth 

Average precision and recall curves were generated for 

each shape signature type and displayed by dataset in Figure 4. 

The higher the precision of the retrieval results, the higher the 

fraction of correct retrieved shapes by the descriptor. For both 

datasets the INPsig precision for identical recall values differed 

from EPsig precision by less than ±1.5 % across all 

interpolation methods. For visual clarity only EPsig is shown 

compared to RTBsig.  

For the MPEG-7 dataset there is little to differentiate the 

performance of the shape signatures. EPsig and RTBsig vary 

by up to ±5 %. However, on the Vehicle Silhouette dataset the 

RTBsig performed better (up to 25 % higher precision) than 

the techniques which rely on a boundary tracing. We 

hypothesize that this effect arises in the Vehicle Silhouette 

dataset as a result of segmentation errors causing the boundary 

walk to distort the shape signature. This is best demonstrated 

using an example sedan image from the Vehicle Silhouettes 

dataset shown in Figure 5 with the distortion marked. The 

sedan’s EPsig, polar representation, and Fourier descriptors are 

shown in Figure 2. The same image with the RTBsig is shown 

in Figure 3 with the distortion marked. 

The segmentation error in the front wheel of the sedan 

causes a significant dip in the EPsig (shown by the red arrow). 

However, this segmentation error does not distort the human 

perception of the general shape of the sedan. Therefore, while 

the EPsig captures the segmented mask’s shape, the mask is 

misrepresenting the object’s shape due to segmentation errors. 

The RTBsig corrects this by ignoring regions where the shape 

boundary doubles back on itself as long as boundary points 

with larger radius values for the same angle exist. With our 

data this effect manifests only in the Vehicle Silhouettes 

because the MPEG-7 shapes all have smooth, clean boundaries 

where any difference in the boundary tracing can be attributed 

to difference in shape. 

The cell tracking application contains a 

segmentation step where errors similar to the 

front tire of the sedan are possible. The 

exemplar cell contains just such 

segmentation errors, shown circled in Figure 

6. This suggests that the RTBsig will 

perform better than the other two shape 

signatures for the cell tracking application. 

Sub-sampled shape signatures (INPsig) 

were evaluated to discover that no sub-

sampling method produced higher precision-recall curves than 

EPsig. Therefore INPsig cannot reduce the effects of boundary 

noise introduced by segmentation error. Interestingly, for both 

datasets using INPsig with only 10 % of the total number of 

 

Figure 5: Sedan Example 

 

 

Figure 6: Exemplar 
cell mask with 

segmentation errors 

circled.  

Figure 4: Precision-Recall curves plotted by shape signature. MPEG-7 CE 

Shape-1 Part B (left). Vehicle Silhouettes (right). 

 

 

Figure 2: EPsig (left), with its polar representation created by treating the 

shape signature as a 1D function and rescaling its x values into 0-360 degrees 

and plotting in polar space (center), and its Fourier Descriptors (right). The 
effect of the segmentation error is marked with an arrow. 

 

 

Figure 3: RTBsig (left), with its polar representation (center), and its Fourier 
Descriptors (right). Effect of the segmentation error is marked with an arrow. 

 



boundary samples produced precision-recall values that 

differed by less than ±2 % from EPsig.  

Adjusting the number of samples in RTBsig affects the FD 

accuracy. Using 360 ± 90 RTBsig samples results in 

precision-recall curves that vary by less than ±1 % from 

RTBsig with 360 points. For sample counts less than 270, 

decreasing the number of samples decreases the resulting FD 

precision and recall. 

B. NIH 3T3 Cell Tracking 

To perform a visual evaluation of the Fourier descriptor 

performance for the cell tracking application, a set of 𝑚 cells 

are randomly selected from time point 𝑡 within the NIH 3T3 

time-lapse image dataset and the 𝑛 cells in time point 𝑡 + 1 

with the closest shape are displayed. The Fourier descriptors 

are used as a similarity feature to perform matching between 

adjacent time points. An example set of results is shown in 

Table 1 where 6 cells from time point (image number) t=194 

are shown with the nearest 5 cells from time point t=195, the 

time point within the sequence was selected randomly. The 

distance between the query and each result is included below 

each shape in the table. 

TABLE I.  NIH 3T3 CELL ASSOCIATION TRACKING EXAMPLE 

Query 
(time t) 

Nearest n cells (time t+1) with distance from query 

  
0.2280 0.4389 0.5767 0.6347 0.6938 

 
 

0.1303 0.1510 0.1539 0.1686 0.1708 

  
0.3393 0.4425 0.4660 0.5874 0.6047 

  
0.1054 0.1448 0.1668 0.1845 0.2053 

 
 

0.1812 0.2354 0.3184 0.3188 0.3868 

 
 

0.0818 0.1102 0.1141 0.1549 0.1747 

Generally the more unique the cell shape, the easier it is for 

the shape descriptor to match the corresponding cell in the next 

time frame. The simpler shapes, for example the last row of 

Table 1, proved more difficult to match because cell 

deformation during the time between image acquisitions causes 

changes in the observed cell shape. A deformation of the same 

magnitude will have a larger effect on a simpler shape. The 

first row of Table 1 shows an example where the query cell 

deformed slightly between images but the closest match is 

correct.  

VII. CONCLUSIONS 

Three methods of constructing FDs based on centroid 

distance shape signatures were analyzed. We concluded that if 

noise from cell boundary segmentation error is a concern then 

the R-Theta Binning signature provides superior shape 

discrimination as part of a cell tracking framework for NIH 

3T3 cells imaged and segmented in phase contrast. Conversely, 

for low noise object boundaries the 1D shape signature 

provides little differentiation. The number of sample points in 

the shape signature was analyzed to discover that sub-sampling 

alone cannot reduce the effect of boundary noise for the 

evaluated datasets.  

The R-Theta Binning shape signature was utilized to 

establish correspondences between cells with noisy boundaries 

in adjacent time points of a time-lapse series of NIH 3T3 live 

cells. The results showed that the more unique cell shapes were 

more likely to find a correct match between time frames. With 

simpler shapes the descriptor had more difficulty correctly 

discerning correspondence because cell deformation between 

images became a dominant factor. Overall the R-Theta Binning 

based Fourier descriptor successfully provides a pool of 

potential cell associations between time points as part of the 

cell tracking cost function. 
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