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Abstract— Phase and bright-field microscopy are suitable for
long-term, high time resolution in vitro imaging of proliferating
cells. Such image sequences can extend over a period of days or
weeks, and have sufficient spatiotemporal resolution to enable
automated segmentation, tracking and lineaging of the cells.
Fluorescence microscopy offers a more detailed insight into
the cellular state, allowing the presence of specific molecular
markers to be interrogated. We have developed a combined
segmentation, tracking and lineaging approach that allows the
phase imaging channel to be enhanced by information from a
periodic fluorescence channel. The system is implemented for
a two-channel fluorescence system called FUCCI that is used
to indicate the timing of cell cycle progression. In combination
with a new denoising algorithm, this approach has been applied
to time-lapse image sequences showing clonal development for
both human lung cancer cells and mouse T-cells. The method
resulted in a significant decrease in the error rate of the
automated algorithms, as measured in the amount of effort
required by a human observer to correct all segmentation,
tracking and lineaging results.

Index Terms— cell segmentation, time-lapse microscopy, T-
cell lineaging, FUCCI, lung cancer lineaging, fluorescence
denoising

I. INTRODUCTION

The development of microscopes with integrated incu-
bation systems has enabled researchers to generate long-
term time-lapse movies capturing cell and clone development
through multiple mitotic divisions. The study of these movies
has wide application in fields such as immunology, develop-
mental and cancer biology, and regenerative medicine. Phase
contrast microscopy allows long-term observation of cells in
vitro with no modification to the cells and less phototoxicity
compared to other approaches. Fluorescent imaging can be
combined with phase contrast microscopy to periodically
capture additional information on cellular state. In particular,
the use of the fluorescent, ubiquitination-based cell cycle
indicator (FUCCI) allows researchers to measure cell-cycle
dynamics, capturing the transition from the G1 to S phases in
real time: cells fluoresce red during the G1 phase and green
during the S, G2 and M phases [1].

The analysis of image data showing clones of dividing
cells requires the cells to be segmented, tracked and lineaged.
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Segmentation delineates the cells in each frame. Tracking
establishes temporal correspondences between segmentation
results. Lineaging establishes parent-daughter relationships.
Previously we have developed a system called LEVER
(Lineage Editing and Validation) [2] to analyze phase con-
trast images of dividing cells. Since errors in tracking and
lineaging can quickly corrupt subsequent analysis [3], we
have designed LEVER so that a human observer can easily
identify and correct errors made in the automated processing.

Combining phase and periodic fluorescence information
allows us to dramatically improve the accuracy of our
segmentation, tracking and lineaging algorithms. For our
purposes, a periodic fluorescent signal results either from (1)
capturing fluorescence less frequently than phase in order to
reduce phototoxicity, or (2) fluorescent signal(s) not being
present in a particular cell in a given image frame. When a
fluorescent signal is available, it is particularly informative,
especially given the difficulty in segmenting complex phase
images. Following the approach we developed in [4], we
refine the segmentation after tracking and lineaging have
been completed. This allows us to incorporate long-term
temporal information into the low-level image segmentation
task. Our approach here incorporates the FUCCI signals
into this segmentation refinement. We also describe a new
denoising algorithm that we have found effective for reliably
extracting FUCCI signal intensities. We tested our code on
two sets of experiments: human lung cancer cells imaged at
the German Cancer Research Center, and CD8+ mouse T-
cells imaged at the Walter and Eliza Hall Institute. While
the results described here are specific to FUCCI signals,
the approach is applicable to any combination of phase and
periodic fluorescent time-lapse imaging.

Automated segmentation, tracking and lineaging of long-
term time-lapse movies of cell and clone development has
been the subject of much research in recent years. For
example, [5] describes a fully-automated system to segment
and track cells. The approach in [6] automatically constructs
cell lineages by segmenting and tracking multichannel flu-
orescent images. A system which incorporates FUCCI is
described in [7], which describes an ImageJ plug-in package
termed FUCCIJ which displays the FUCCI state on the
lineage tree and uses the corresponding cell cycle patterns
to predict stem cell fate. LEVER is similar in spirit to these
approaches, but differs in several important ways. LEVER
is designed such that lineage correction and validation by a



(a) Human lung cancer cells

(b) Mouse T-cells

Fig. 1: Examples of our denoising algorithm. The top left panels show the phase (a) and bright-field (b) images. Top middle and right
show the raw red and green FUCCI channels, and below them are the same images after denoising. The bottom left image shows the
FUCCI signals superimposed on the phase/bright-field image. The boxes outline the regions of interest that were cropped and shown in
Fig. 2.

human observer is an integral part of the system. Once vali-
dated, the corrected lineage is used to refine the segmentation
and tracking for subsequent frames, reducing the number of
edits required to completely correct and validate a tree. Also,
LEVER shows both the phase and intensity of the FUCCI
signal directly on the lineage tree.

II. MATERIALS AND METHODS

A. Preparation of Cells

Our first application is with a non-small human lung
cancer cell line (H838) transfected with the FUCCI cell
cycle sensor. Images were captured every 20 minutes for

the two fluorescent markers (GFP and mKate2) as well as
phase contrast. Images were captured as 2711×2705 16-bit
TIFF files (Fig. 1a).

Our second application is with CD8+ T-cells which were
purified from lymph nodes of one FUCCI Red/Green female
mouse. Four images were captured every 165 seconds for the
two fluorescent markers (GFP and DsRed), in transmission,
and out-of-focus transmission. Each image was captured as
a 1388×1040 TIFF file (Fig. 1b).

B. Image Cropping

Activated lymphocytes are motile, and in order to prevent
cell migration outside the field of view, the cells were placed



(a) Human lung cancer cells — 692 frames captured over 10 days

(b) Mouse T-cells — 645 frames captured over 30 hours

Fig. 2: Examples of FUCCI signal visualization support in LEVER. For the human lung cancer cells (a) the lineage tree with FUCCI
signals is shown on the right. On the left the FUCCI signal has been alpha-blended with the corresponding phase image. Segmentation
and lineage edits update the FUCCI signal intensities in real time. As shown with the mouse T-cell example (b), the user can also switch
to view the unblended images. The raw bright-field (top left), DsRed (bottom left) and GFP (bottom right) images are shown with colored
polygons representing segmentation results. The top right image shows the bright-field blended with the red and green FUCCI signals.

in 125 µm wells [8]. This gives an additional advantage
of preventing cells from forming clusters, but presents a
challenge to cell segmentation since the wells are clearly
visible in the transmission channel (Fig. 1b). The main
challenges of well detection are cells inside the wells,
irregular distance between the wells, and an angle between
the well edges and the frame boundaries that resulted from
the manual placement of a plastic substrate with imprinted
wells inside the culturing chamber. The wells were delineated
using a combination of edge detection and mathematical
morphology [9]. After detection, the image regions internal
to each well were extracted and written to separate files for

further processing (Fig. 2b).

C. Denoising, segmentation, tracking, and lineaging

The fluorescent images in the experiments were much
noisier than their corresponding phase/bright-field images
(Fig. 1) and it was necessary to denoise the images before
segmentation. Our denoising algorithm takes as input an
image and an initial estimate for foreground and background.
The algorithm subtracts the mean and 1–2 standard devia-
tions of the background from the image. A new binary image
is created from the pixels that remain positive, and this is fed
back into the algorithm iteratively until it no longer changes.



To segment the lung cancer cells, we first applied a
standard deviation filter to the phase contrast image. A
Gaussian mixture model (GMM) [9] with 3 components
was then fitted on the intensities of the filtered images. The
pixels were defined as foreground if they were classified
into either of the two highest mean clusters. These pixels
were merged with the denoised mKate2 and GFP channels
and were split into connected components. It was difficult
to split these into separate cells based solely on the phase
channel, since the cells tended to clump together (Fig. 2a).
The FUCCI markers, being nuclear indicators, were smaller
than the full cells and so were more easily separated.
Therefore, if a single connected component in the combined
image overlapped n connected components in the fluorescent
images, we assumed that the component represented n cells.
We thus used the FUCCI signals, when detected, to split the
component into n parts by assigning each pixel to its closest
overlapping FUCCI signal. Segmentation of the T-cells was
done in a similar manner, but since the FUCCI markers were
roughly the same size as the cells (Fig. 2b) they were not
used to help split adjacent cells.

Following the initial segmentation, the cells are tracked
and lineaged as described in [2] and [10]. Using information
from the tracking, lineaging, and fluorescent imaging chan-
nels, we identify the number of cells that we are confident
should exist in each image frame. A segmentation refinement
step [4] is then applied in conjunction with the tracking
algorithm to attempt to either split existing segmentations
or add new ones in order to obtain segmentations for each
cell in every image frame.

III. EXPERIMENTAL RESULTS

To calculate the intensity of the FUCCI signals, we took
the denoised red and green channel images and computed
the median of all the non-zero points lying within the convex
hull of the cell. These were normalized to the range [0, 1] for
each track and were displayed graphically on the lineage tree
(Fig. 2). The colors were also alpha-blended with the phase
images of the cells to make visualization easier. Cell radius
and maximum cell velocity parameters were set for the two
datasets, and everything else was determined automatically
by LEVER.

All of the automated segmentation, tracking and lineaging
results were validated by a human observer. Any errors were
corrected manually. The LEVER program is designed to
make errors easy to identify and correct. For the human
lung cancer cells we processed 12 clones containing 68 cells
and 5,086 segmentations. The initial segmentation, tracking,
and lineaging error rate was 7.3% before we applied the
segmentation refinement step that used tracking, lineage,
and fluorescence information to automatically improve the
segmentation. This is the number of user-provided edits that
was required to fully correct any errors. After the application
of the segmentation refinement step, the error rate fell to
0.9%.

For the mouse T-cells, we processed 25 clones containing
289 cells and 60,758 segmentations. The initial error rate was

12%. After application of the segmentation refinement step,
the error rate fell to 7.5%. Because the time resolution of
these images was not sufficient to provide clear discrimina-
tion for the tracking algorithm, the segmentation refinement
was not as effective as it was for the lung cancer data. Images
were captured every 165 seconds, and for future applications
involving mouse T-cells we have found that 120 seconds
should be the maximum time between images for reliable
tracking.

IV. CONCLUSIONS

It is becoming increasingly important to be able to pro-
cess multi-channel time-lapse image sequences showing the
development of clones of dividing cells. Phase and bright-
field microscopy allow the cells to be observed long-term
with the time resolution sufficient to enable reliable tracking
and with minimal phototoxicity and with no modification to
the cells. Fluorescence imaging provides a rich source of
information on cell state, information that may be available
only periodically. The ability to incorporate the fluorescence
signal, when available, into the phase and bright-field image
processing steps provides an effective means to improve the
accuracy of automated algorithms.
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