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Abstract—Optical coherence tomography (OCT) is an 

important tool for analyzing small animal models of ocular 
disease. As OCT image quality and downstream analysis are 
affected by speckle noise, we have developed an algorithm to 
average multiple OCT volume datasets obtained by repeatedly 
scanning the same mouse eye. Here, we address the pulsatile 
movement of ocular tissue along an axis parallel to the OCT 
light path, which compromises the quality of the registered 
and averaged images. As a refinement of the algorithm, we 
show that image quality is improved by restricting the iterative 
alignment process to increments along the y image axis, which 
parallels the OCT light path.   

Index Terms—Optical coherence tomography, en face OCT, 
segmentation, alignment, registration, mouse retina  

I. Introduction   
The application of noninvasive imaging methods to small 

animal models of human disease has proven to be invaluable 
for understanding disease pathogenesis. Optical coherence 
tomography (OCT) is a non-invasive and high-resolution 
method that has been widely applied in this field, particularly 
in the eye [1], [2]. For example, using OCT to capture image 
volumes, large amounts of information from the mouse retina 
and nearby tissues can be retrieved in a short time frame (see 
Fig. 1, 2 and 3). This detailed image data allows researchers to 
build and test hypotheses and models intuitively and 
quantitatively. For these reasons, OCT imaging may aid ocular 
phenotyping in large-scale high-throughput efforts, such as the 
Knockout Mouse Phenotyping Project (KOMP2) and 
International Mouse Phenotyping Consortium (IMPC), which 
aim to create a functional catalog of >20,000 mouse genes.  

 
To analyze retinal phenotypes or disease patterns, it is 

common to detect and precisely separate (segment) each layer 
in the retinal image and determine its thickness [3], [4], [5]. 
Image segmentation may also be useful to quantify changes in 
lesions and blood vessels during disease progression. In large-
scale research projects, hundreds or thousands of mice are 
scanned multiple times. Developing automated or semi-
automated segmentation algorithms would improve 
opportunities to exploit the full utility of OCT datasets. 
However, OCT images suffer from speckle noise (see Fig. 1, 
2), and this noise is the fundamental barrier to segmenting 
retinal layers [2]. Moreover, speckle noise inherently exists in 
OCT technology because of limited spatial-frequency 
bandwidth during the signal measurement. 

  
Most segmentation pipelines include a pre-processing step 

to try to remove different types of noise. Various de-noising 

algorithms have been used to pre-process the OCT images. 2D 
or 3D spatial image filters such as median filter, mean filter, 
Gaussian kernel filter, directional filter and wavelet shrinkage, 
etc., have been applied to enhance OCT images. However 
speckle noise in OCT is a random phenomenon, and linear 
filter algorithms usually suppress this type of noise at the cost 
of softening the images and losing detail [3], [4], [5], [6], [7]. 
Signal averaging, in which a set of replicate measurements is 
averaged, can increase the signal-to-noise ratio efficiently. This 
technique is robust for removing random speckle noise [7]. 
Therefore, to allow signal averaging, we refined an algorithm 
to process multiple OCT volume scans of the same mouse 
retina acquired in rapid succession. The resulting OCT image 
stacks are registered and averaged based on intensity to create a 
clearer stack with more visible tissue details. However, ocular 
movements during data acquisition can introduce image 
artifacts that compromise the quality of the averaged image 
stack. By analyzing the image stacks, we found that 
constraining a key registration step to iterate in a single 
direction successfully reduced motion-associated artifacts. 

II. Methods 
We analyzed ten retinal OCT volume datasets scanned 

successively from a single mouse eye using an R2200 ultrahigh 
resolution spectral domain OCT system (Bioptigen, Raleigh, 
NC) on a 32-bit Windows operating system. Mice were 
anesthetized prior to and during the scanning and the interval 
between scans was within five seconds. The acquisition was 
nonisotropic, with 1000 A-scans per B-scan and 100 B-scans 
over a 1.4 mm-diameter retinal area. The original datasets were 
saved as *.oct files, a proprietary format generated by the 
InVivoVue software (Bioptigen), and converted to *.tif format 
with a custom Java application (OCTToTIFF) based on an 
OCT Reader plugin provided by Bioptigen. The pixel 
dimension of the converted image stacks is 1000 × 1024 × 100 
(xy by z slices). Files were analyzed in ImageJ/Fiji [8], [9]. 

 
The OCT Volume Averager algorithm we are developing is 

based on ImageJ/Fiji plugins. Briefly, the algorithm accesses 
replicate OCT volume scans in a user-designated directory, 
automatically converts files from *.oct to *.tif format and crops 
the images according to user input.  The nth image slice is then 
read from all replicate image stacks acquired from a single eye, 
and TurboReg [10] is used to register these slices, which are 
then averaged based on intensity. The resulting averaged image 
stack is aligned with StackReg [10], a plugin that aligns images 
within a single stack and relies on the TurboReg registration 
algorithm. OCT Volume Averager is being refined as an 
ImageJ/Fiji plugin and as a standalone Java application.  



III. Results and Discussion 
To examine the need for within-stack registration, image 

slices from a single OCT volume scan of a mouse retina were 
displayed in ImageJ (each slice corresponds to a B-scan from 
the OCT volume dataset). Subtle vertical movements were 
observed to occur repeatedly, as seen by comparing slices from 
the image stack (Fig. 1A and B). Movements of the retina and 
surrounding tissue possibly due to heartbeat and breathing may 
account for these relatively small changes in image position 
[5], [11]. Artifacts due to human operation and device setup, 
etc., may also have contributed to the observed movement [12].  
The repeated shifts were distinct from displacements between 
the ends and middle of the scan (Fig. 1A and C), which result 
from imperfect alignment of the optical path of the instrument 
with that of the eye, resulting in a tilting of the retina with 
respect to the imaging beam, or from incomplete adjustment of 
the instrument to correct for the curvature of the posterior eye.  

 
The ImageJ/Fiji plugin StackReg registers slices of an 

image stack [10]. To demonstrate the utility of StackReg on 
OCT volume scans of the retina, the image stack was converted 
to an en face orientation using the Stack>Reslice function of 
ImageJ. Single en face slices exhibited horizontal banding 
artifacts that reflect vertical movement during acquisition, as 
described above (see Fig. 2A). For comparison, StackReg was 
applied to the image stack, and the aligned image stack was 
then also converted into an en face orientation (see Fig. 2B). 
Comparison of these images showed that StackReg reduced the 
horizontal banding artifacts caused by ocular movement. 

 
Integrating StackReg alignment into OCT Volume 

Averager plugin is under development. To demonstrate the 
improvement in image quality achieved by StackReg, we ran 
the plugin with or without deploying StackReg. OCT Volume 
Averager reads the nth image slice from all replicates, uses 
TurboReg to align those slices and averages them based on 
intensity, yielding a new image stack. A single en face slice of 
the results obtained by averaging replicate scans without 
StackReg is shown in Fig. 3A. The image quality is much 
better than in the corresponding stack without averaging 
(compare with Fig. 2), but horizontal bands remain. After 
applying StackReg to the averaged image stack, more details 
are visible (Fig. 3B) and horizontal banding is reduced. 

However, the expected circular shape of the image is skewed 
and appears ovoid. This could be due to the fact that the 
automatic alignment algorithm in StackReg does not 
compensate for the systematic shifting errors effectively. 

  
We sought to understand the behavior of the image 

movement to develop an alignment approach that did not result 
in a skewed image. We therefore examined the displacement of 
each slice in all of the replicate OCT volume scans. Image 
stacks were opened in ImageJ and a median filter was applied 
first to smooth the images. Intensity was then thresholded 
manually to convert the whole stack from 8-bit gray scale 
image into a binary black and white image. The retinal tissue 
area was indicated as white pixels and the background as black. 
We chose seven uppermost white pixels (closest to the 
vitreous) corresponding to an x value between 200-800 pixels 
with a step of 100 pixels. The median y value of those seven 
pixels was taken as the upper limit of the retinal tissue. The 
location of this limit in each slice of ten replicate image stacks 
is displayed in Fig. 4A. Each image stack shows a slightly 
different but mostly similar shifting pattern. We applied the 
same procedure to the averaged and StackReg aligned image 
stack, as shown in Fig. 4B, dashed line. By comparing the 
shifting range in Fig. 4, A and B, we can see that StackReg, as 
an automatic registration program, tried to find the vertical 
shift and compensate for that. The shifting range in Fig. 4B is 
much smaller than the shifting range in Fig. 4A. However, the 
automated alignment program stopped once reached the 
iteration limit or the intensity threshold. This could explain the 
skewed averaged image observed in Fig. 3B. 

 

 
Fig. 2.  A) En face view of a slice from a single OCT volume 
dataset without alignment. B) Corresponding slice with stack 
alignment. 

 
Fig. 3.  A) Single en face slice from an OCT image stack after 
multiple stack image averaging. B) Single slice of the same dataset 
after multiple stack image averaging and alignment. 

  

Fig. 1. Vertical displacement of individual slices (B-scans) in an 
image stack from an OCT volume scan. A) Slice 1. B) Slice 11. C) 
Slice 63. Cropped images from the same x range are shown. 



To average all the image stacks and also keep the original 
retina shape as much as possible for further comparison and 
measurements, we decided to compensate only the vertical 
image shifts. As StackReg relies on TurboReg [10], we created 
a modified implementation of TurboReg, named TurboRegY, 
which allows only vertical shifts for the transformation.  

 
Registration in TurboReg employs an automatic algorithm 

to calculate the integrated square difference of pixel intensity 
values as a measure of the similarity of two images. The plugin 
uses fR  as the intensity for the reference image, and fT  as the 
intensity for the test image. TurboReg then tries to find a 
transformation parameterized by p that can minimize the 
following criterion: 

 
| fR (x)−QP ( fT (x)) |

2  (1) 
 

TurboReg can handle images with different color scheme 
and can perform various transformations. OCT image stacks 
are 8-bits grayscale. To keep the retina shape, we chose to use 
only 2D translation to align two images. Thus, to minimize the 
value in equation (1), after each iteration, the translation 
parameter p will translate the pixel X (with coordinates x, y) 
into a new location X’ (with coordinates x’, y’).  
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In the modified TurboRegY algorithm, using 2D translation 

on 8-bit grayscale images, we changed the routine to update the 
parameter p. After every iteration towards minimizing the 
equation (1), the translation parameter p will update only the y 
coordinate for pixel X as shown in the following equation. 
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In OCT Volume Averager, TurboRegY is invoked only 
when called by StackReg to align the image stack averaged 
from all replicate scans; the unmodified TurboReg is used for 
the earlier registration steps. The en face view of the averaged 
and aligned image shows little sign of skewing (Fig. 5A) and 
the quality of this modified registration is similar to that of the 
original StackReg implementation (compare with Fig. 3B).  
The visual differences of the averaged images confirmed that 
the vertical shifts caused by the animals’ physiological motion 
should be restricted during the image registration step. The 
retinal blood vessels shown in Fig. 5A closely match those 
highlighted by brightfield fundus imaging of the same eye (Fig. 
5B), providing qualitative evidence that the algorithm is 
performing accurately. We also analyzed the vertical shifting 
pattern of the averaged and aligned image stack using the 
modified StackReg, which used our TurboRegY 
implementation. The vertical shifting pattern is shown in Fig. 
4B, solid line. It is very close to the averaged and aligned 
image stack using the original StackReg implementation. This 
suggests that the overcompensation of the horizontal shifts 
from the original StackReg source code is the main reason for 
the skewed image stack. In the future image analysis of OCT 
image stacks it may be necessary to pay more attention to 
additional noise introduced by generic optimization algorithms.  

IV. Conclusion 
OCT is an efficient noninvasive 3D imaging technology for 

analyzing mouse models of ocular disease to characterize 
pathological features and to evaluate the effects of potential 
treatments. Although commercial instruments provide high 
quality OCT volume data, further quality improvement by data 
averaging is expected to enhance the qualitative and 
quantitative assessment of ocular disease progression. As part 
of an ongoing refinement of OCT Volume Averager, an 
ImageJ-based registration and averaging algorithm for 
processing replicate OCT volume scans in the eye, we 
identified vertical displacement of B-scan images during the 
acquisition process as a prominent source of image artifacts. 
Application of TurboRegY, a modified version of TurboReg 
restricted to registration in the y dimension, improved the 
output of this algorithm. 

 
Fig. 5.  A) Mouse eye en face view after multiple stack image 
averaging and alignment using the modified StackReg 
implementation in the OCT Volume Averager algorithm, in which 
the alignment transformation is limited to the vertical y-axis. B) 
Brightfield fundus image of the same eye processed to reveal the 
superficial retinal blood vessels, scaled and cropped to match A.  

 
Fig. 4.  A) Displacement of OCT retinal images along the y-axis 
with slice number in replicate image stacks acquired from a single 
eye. B) Reduced displacement of the averaged and aligned image 
stacks using OCT Volume Averager algorithm with (solid line) or 
without (dashed line) limiting StackReg to fit in the y dimension.  
 



 Fundus images from other modalities, such as brightfield 
imaging, offer the possibility to segment retinal blood vessels 
clearly and completely from the original image stack. 
Therefore, besides the intensity based global registration, it 
may be possible to use the segmented structure to apply 
feature-based registration to align and average the OCT image 
stacks. After extracting features of our interest, 3D 
visualization could also be used to examine further the results 
of averaging the aligned multiple image stacks and allow us to 
determine the sources of various noise. Although more 
sophisticated automated 2D/3D registration programs may 
further improve the averaging of OCT volume stacks, it is 
likely that pre-processing of image stacks to compensate for 
the vertical shift in each stack will continue to be necessary for 
optimal image quality. 
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