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Abstract—We present Funimage, a tool for developing 

image processing pipelines using the functional programming 

language Clojure built upon ImageJ and FIJI. Image 

processing pipelines developed with Clojure can be rapidly 

prototyped and automatically programmed with 

metaprogramming techniques. Three usage examples are 

presented on two types of biological images. 

Index Terms—Clojure, Functional programming, ImageJ, 

FIJI 

I. Introduction 

ImageJ has become a standard tool for biological image 

processing [1]. While there have been multiple extensions that 

wrap around ImageJ, such as Icy [2] and CellProfiler [3]; FIJI 

[4] is one of the most well known and comprehensive of such 

ImageJ wrappers. Although there is an abundance of ImageJ 

plugins for handling various imaging modalities and analytical 

techniques, one of the most powerful features of ImageJ and 

FIJI is the ability to write macros and scripts. Macros and 

scripts allow researchers to quickly design custom image 

processing procedures, which can be reused across multiple 

images and data sets. This is particularly true in FIJI, where 

the incorporation of SciJava has vastly extended the set of 

programming languages in which scripts can be written. Here 

we focus on the functional programming language, Clojure 

[5]. Clojure is a Lisp language that facilitates meta-

programming, allowing developers to easily write programs 

that write programs, and high-level programmatic 

manipulations commonly encountered in machine learning 

and artificial intelligence. 

The Lisp (LISt Processing) family of programming 

languages [6] has the second oldest history of all high-level 

languages, preceded only by Fortran. Development of the 

language was heavily motivated by the founding of the field of 

artificial intelligence (AI), and it has been used extensively 

within the field of AI. Lisp programs are easily recognized by 

their Polish prefix notation, which leads to a large number of 

parenthesis delineating program scope with closures. Lisp 

languages are often described as the most elegant and 

beautiful programming languages. This is because through the 

minimalistic language definition, a great deal of high-level 

power can be achieved. The most fundamental of these high-

level features in Lisp is homoiconicity, whereby functions are 

first-class data types, allowing programs to create and 

manipulate functions during run-time.  

Biological image processing is strongly rooted in the use 

of customized image pipelines. Images for certain 

experiments, equipment, and even scientists require unique 

processes for image analysis. Image pipelines are 

implemented in a variety of ways, including ImageJ macros, 

Matlab scripts, CellProfiler pipelines, shell scripts, and 

programs in C++, Java, Fortran, Python, etc.. All of these 

implementations are code of one kind or another. In this paper 

we present Funimage, a system for image processing built on 

ImageJ and FIJI that exploits the functional programming 

language, Clojure, for elegant high-level development. 

II. Funimage 

ImageJ and FIJI offer a broad set of features via core 

functions and plugins, making them an excellent option for 

building upon. As we have mentioned, lisp languages have a 

number of high-level features that not only allow developers 

to abstract away low level details but also write programs that 

write programs, meta-programming. The prospect of meta-

programming is particularly appealing in the context of 

designing image processing pipelines, where customized 

procedures are often essential for small sets of images, but 

there is a high degree of code overlap between procedures. 

Clojure is currently one of the most actively developed lisp 

language, with a vibrant community of developers, and it has 

been incorporated into FIJI via the SciJava project. Clojure 

was originally designed to operate within the Java Virtual 

Machine (JVM), and was designed to embrace compatibility 

with Java through interop functions. In fact, any Java code can 

be used from Clojure with no modification required. This is 

particularly significant when building upon ImageJ/FIJI, 

which offer a wide-range of functionality already 
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implemented in Java. Funimage is open-source and publicly 

available
1
. 

In this paper we present the initial version of Funimage, 

which focuses on support of ImageJ data structures, such as 

ImagePlus, ImageProcessor, ImageStack, ROI, and more. We 

begin by introducing some example code: 

 

(def imp (open-imp “RatBrain_ROI-1_DAPI.tif”)) 

(def mask (threshold (copy-imp imp) 25)) 

(show-imp mask) 
 

These three lines open, threshold, and display an image using 

ImageJ data structures. Developers of FIJI scripts will be 

familiar with this type of code, and a programming guide for 

using Clojure within FIJI is already available [7]. It is 

important to highlight that Funimage extends beyond a 

recapitulation of the Clojure scripting guide, by providing 

type-hinted functions for faster processing, bindings to 

ImgLib2 [8] data structures, in addition to de novo 

functionality. Code written with Funimage can be run in a 

stand-alone manner. In other words, programs written in 

Funimage are complete pieces of software in and of 

themselves, distinct from ImageJ scripts written in Clojure 

which must be executed within ImageJ. However, Funimage 

programs can still be used within ImageJ, making it an 

appealing way to develop image processing code that needs to 

be distributed to users who are already familiar with ImageJ. 

FIJI provides facilities for using high-performance 

computing clusters via the Archipelago plugin. This plugin 

allows users to launch clients on computing nodes and a 

master process on a central machine, and then distribute jobs 

over multiple machines. This approach to high performance 

computing (HPC) cluster usage offers some crucial benefits, 

such as the development of image processing pipelines that 

incorporate distributed computing. However, when not 

performing image processing operations in a distributed 

manner, this may not necessarily be the simplest or most 

desirable option for the average HPC user. Many image 

processing developers simply desire the ability to perform 

tasks in parallel, such as applying an image processing 

pipeline to a set of images.  

To this end we exploit two Clojure tools: Leiningen, a 

package management tool for Clojure, and Brevis [9], a 

functional tool for scientific and artificial life research. Scripts 

developed in Funimage are, in all senses, normal stand-alone 

Clojure programs that do not require FIJI to be running. Using 

Funimage in conjunction with Brevis, researchers can simply 

execute a command on their local machine in order to perform 

a parallel task on an HPC as follows: 

 

(start-run-array [“RatBrain_ROI-1_DAPI.tif” 

“RatBrain_ROI-1_DAPI.tif” “RatBrain_ROI-

1_DAPI.tif”] funimage-bioimage.nucleus-counter 

MyUsername hpc.myinstitution.org) 
 

                                                           
1
 https://github.com/funimage/funimage 

This command, available through Brevis, will transfer the 

local Clojure project containing “funimage-bioimage.nucleus-

counter” to the user’s cluster, and launch a sequence of jobs 

parametrized by image filename. The prerequisites for this 

form of parallel computing are that the user has configured 

SSH keys on the cluster, and Leiningen is available on the 

cluster. This functionality has been successfully tested on 

clusters at multiple institutions running Sun Grid Engine and 

LSF cluster management systems.  

III. Example Applications 

Here we present a few examples of Funimage being used 

on real-world data. First, we begin with an example of nucleus 

detection using data from the 2015 Bioimage Nucleus 

Counting competition. Second, we detect and measure 

filopodia from an in vitro assay of HUVEC cells cultured on a 

2D collagen matrix, and an in vivo sample of endothelium 

from mouse hindbrain. Finally, we demonstrate the 

visualization capabilities of Funimage on both the nucleus and 

filopodia detection data. 

A.  Nucleus Detection 

Recursive convolution has proven to be useful for 

automatically generating image processing pipelines [10]. A 

single kernel recursively convolved with varying depth over 

an image can serve as a basis for naive search methods. 

Machine learning and search methods such as convolutional- 

 

 

 

 

Fig. 1. An example of nuclei detection by searching through 

recursive convolution parameters. Top-left, original image; 

top-right, target mask; Remaining 4 images are 

approximations of the target mask increasing in accuracy from 

left to right, and top to bottom.   



 

 

recursive neural networks can be used to generate, pool, and 

cluster features to produce novel image processing classifiers 

[10]. Given a target image, recursive convolution can be used 

within image processing pipelines to transform an input image 

into a resulting image that is close to the target image. Kernels 

used for such recursive convolution can even be discovered 

with naive search methods, such as Monte Carlo-type hill 

climbing. As a visual demonstration Fig. 1a is an original 

input image of nuclei from the 2015 Bioimage Nucleus 

counting competition. Fig. 1b is a hand-processed target used 

during hill climbing search. In Figs. 1c-f are images that were 

found to minimize the distance to the target image in order of 

increasing accuracy. 

B. Filopodia Detection 

In these examples we detect cellular protrusions, called 

filopodia, in a maximum Z-projection of a confocal image 

stack of cultured HUVEC cells plated on a 2D collagen 

matrix, as well as an isolectin-B4 stained wild-type mouse 

hindbrain (embryonic day 13.5). Here we use an algorithm 

inspired by [11]. Consider the in vitro HUVEC image as an 

example, the input image (Fig 2a) is thresholded and holes are 

filled to obtain a mask. Morphological operations are then 

performed to extract the central body of the cells. Upon 

obtaining the central body, image subtraction can be used to 

obtain an image containing only the filopodia. This is 

accomplished with the following code: 

 

(def mask (fill-holes (threshold imp 7))) 

(def body (extract-body mask num-iterations)) 

(def filopodia (imp-subtract mask body)) 

(def output (merge-imps filopodia body (create-

imp-like body))) 
 

In Fig 2b we show the output image, which is a colored 

merging of the filopodia and body images. In Figs 2c-d we 

show an in vivo example, where additional preprocessing steps 

of despeckling are necessary due to additional background 

noise and greater morphological variability. Furthermore, the 

combination of noise and loss of information from using a 2D 

projection of a complex 3D structure lead to additional 

disruptions in extracted filopodia. For these reasons Funimage 

extensions are being made available to facilitate 3D analysis 

of morphological structures. 

C. Visualization 

Funimage can also be used to create images for 

visualization. In this section we present three examples, one 

where nuclei are color coded based upon density, and two 

where the filopodia extracted in section B are color coded 

based upon length. This functionality is accomplished in two 

steps, first the ImageJ particle analyzer is used to extract ROIs 

of segments and a mask is created with segments being 

assigned their respective measured values. Then, the lookup 

table (LUT) color coding functionality of ImageJ is utilized to 

assign colors to segments. This same procedure applies for 

both cases, where only the measuring method differs. nuclei 

color-coded by neighborhood density are shown in Fig 3a, 

filopodia color-coded by length are shown in Fig 3b and Fig 

3c. The BAR plugin is used to create the corresponding 

legends in all figures.  

 

 
Fig. 2. Examples of filopodia detection. Left, original 

maximum Z-projection of confocal image; right, segmented 

cell mass (green) and filopodia (red). Top, in vitro cultured 

HUVEC cells; bottom, in vivo mouse hindbrain endothelium. 

 

 

Fig. 3. Visualization of measured attributes with Funimage. 

Top, filopodia color coded by length; bottom, nuclei color 

coded by neighborhood density. 

IV.  Conclusion 

In this paper we have introduced the Funimage platform for 

developing image processing tools. As we have noted, 

Funimage utilizes both ImageJ and FIJI, and can be used to 

create both ImageJ plugins and stand-alone image processing 

programs in the functional programming language Clojure. 



 

 

This allows developers to rapidly prototype, test, and deploy 

customized image processing pipelines. While many existing 

pieces of software for biological image analysis are geared 

towards experimental biologists, Funimage is designed with 

the developer in mind, reducing development time and 

maintaining flexibility. We have used Funimage in analysis of 

multiple types of biological image data (confocal, 

immunohistochemistry stained serial sections, and lightsheet). 

Funimage is actively being used in projects across multiple 

institutions, and a wide range of scales, demonstrating the 

broad applicability of functional programming for image 

processing and analysis. 
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