

Functional Image Processing with

ImageJ/FIJI

Kyle I. S. Harrington, Timothy S. Stiles*, Lakshmi Venkatraman, Claudia Prahst, Katie Bentley

Center for Vascular Biology Research

Beth Israel Deaconess Medical Center

Harvard Medical School

Boston, MA, USA

 kharrin3@bidmc.harvard.edu

*School of Natural Science, Hampshire College, Amherst, MA, USA

Abstract—We present Funimage, a tool for developing

image processing pipelines using the functional programming

language Clojure built upon ImageJ and FIJI. Image

processing pipelines developed with Clojure can be rapidly

prototyped and automatically programmed with

metaprogramming techniques. Three usage examples are

presented on two types of biological images.

Index Terms—Clojure, Functional programming, ImageJ,

FIJI

I. Introduction

ImageJ has become a standard tool for biological image

processing [1]. While there have been multiple extensions that

wrap around ImageJ, such as Icy [2] and CellProfiler [3]; FIJI

[4] is one of the most well known and comprehensive of such

ImageJ wrappers. Although there is an abundance of ImageJ

plugins for handling various imaging modalities and analytical

techniques, one of the most powerful features of ImageJ and

FIJI is the ability to write macros and scripts. Macros and

scripts allow researchers to quickly design custom image

processing procedures, which can be reused across multiple

images and data sets. This is particularly true in FIJI, where

the incorporation of SciJava has vastly extended the set of

programming languages in which scripts can be written. Here

we focus on the functional programming language, Clojure

[5]. Clojure is a Lisp language that facilitates meta-

programming, allowing developers to easily write programs

that write programs, and high-level programmatic

manipulations commonly encountered in machine learning

and artificial intelligence.

The Lisp (LISt Processing) family of programming

languages [6] has the second oldest history of all high-level

languages, preceded only by Fortran. Development of the

language was heavily motivated by the founding of the field of

artificial intelligence (AI), and it has been used extensively

within the field of AI. Lisp programs are easily recognized by

their Polish prefix notation, which leads to a large number of

parenthesis delineating program scope with closures. Lisp

languages are often described as the most elegant and

beautiful programming languages. This is because through the

minimalistic language definition, a great deal of high-level

power can be achieved. The most fundamental of these high-

level features in Lisp is homoiconicity, whereby functions are

first-class data types, allowing programs to create and

manipulate functions during run-time.

Biological image processing is strongly rooted in the use

of customized image pipelines. Images for certain

experiments, equipment, and even scientists require unique

processes for image analysis. Image pipelines are

implemented in a variety of ways, including ImageJ macros,

Matlab scripts, CellProfiler pipelines, shell scripts, and

programs in C++, Java, Fortran, Python, etc.. All of these

implementations are code of one kind or another. In this paper

we present Funimage, a system for image processing built on

ImageJ and FIJI that exploits the functional programming

language, Clojure, for elegant high-level development.

II. Funimage

ImageJ and FIJI offer a broad set of features via core

functions and plugins, making them an excellent option for

building upon. As we have mentioned, lisp languages have a

number of high-level features that not only allow developers

to abstract away low level details but also write programs that

write programs, meta-programming. The prospect of meta-

programming is particularly appealing in the context of

designing image processing pipelines, where customized

procedures are often essential for small sets of images, but

there is a high degree of code overlap between procedures.

Clojure is currently one of the most actively developed lisp

language, with a vibrant community of developers, and it has

been incorporated into FIJI via the SciJava project. Clojure

was originally designed to operate within the Java Virtual

Machine (JVM), and was designed to embrace compatibility

with Java through interop functions. In fact, any Java code can

be used from Clojure with no modification required. This is

particularly significant when building upon ImageJ/FIJI,

which offer a wide-range of functionality already

mailto:kharrin3@bidmc.harvard.edu

implemented in Java. Funimage is open-source and publicly

available
1
.

In this paper we present the initial version of Funimage,

which focuses on support of ImageJ data structures, such as

ImagePlus, ImageProcessor, ImageStack, ROI, and more. We

begin by introducing some example code:

(def imp (open-imp “RatBrain_ROI-1_DAPI.tif”))

(def mask (threshold (copy-imp imp) 25))

(show-imp mask)

These three lines open, threshold, and display an image using

ImageJ data structures. Developers of FIJI scripts will be

familiar with this type of code, and a programming guide for

using Clojure within FIJI is already available [7]. It is

important to highlight that Funimage extends beyond a

recapitulation of the Clojure scripting guide, by providing

type-hinted functions for faster processing, bindings to

ImgLib2 [8] data structures, in addition to de novo

functionality. Code written with Funimage can be run in a

stand-alone manner. In other words, programs written in

Funimage are complete pieces of software in and of

themselves, distinct from ImageJ scripts written in Clojure

which must be executed within ImageJ. However, Funimage

programs can still be used within ImageJ, making it an

appealing way to develop image processing code that needs to

be distributed to users who are already familiar with ImageJ.

FIJI provides facilities for using high-performance

computing clusters via the Archipelago plugin. This plugin

allows users to launch clients on computing nodes and a

master process on a central machine, and then distribute jobs

over multiple machines. This approach to high performance

computing (HPC) cluster usage offers some crucial benefits,

such as the development of image processing pipelines that

incorporate distributed computing. However, when not

performing image processing operations in a distributed

manner, this may not necessarily be the simplest or most

desirable option for the average HPC user. Many image

processing developers simply desire the ability to perform

tasks in parallel, such as applying an image processing

pipeline to a set of images.

To this end we exploit two Clojure tools: Leiningen, a

package management tool for Clojure, and Brevis [9], a

functional tool for scientific and artificial life research. Scripts

developed in Funimage are, in all senses, normal stand-alone

Clojure programs that do not require FIJI to be running. Using

Funimage in conjunction with Brevis, researchers can simply

execute a command on their local machine in order to perform

a parallel task on an HPC as follows:

(start-run-array [“RatBrain_ROI-1_DAPI.tif”

“RatBrain_ROI-1_DAPI.tif” “RatBrain_ROI-

1_DAPI.tif”] funimage-bioimage.nucleus-counter

MyUsername hpc.myinstitution.org)

1
 https://github.com/funimage/funimage

This command, available through Brevis, will transfer the

local Clojure project containing “funimage-bioimage.nucleus-

counter” to the user’s cluster, and launch a sequence of jobs

parametrized by image filename. The prerequisites for this

form of parallel computing are that the user has configured

SSH keys on the cluster, and Leiningen is available on the

cluster. This functionality has been successfully tested on

clusters at multiple institutions running Sun Grid Engine and

LSF cluster management systems.

III. Example Applications

Here we present a few examples of Funimage being used

on real-world data. First, we begin with an example of nucleus

detection using data from the 2015 Bioimage Nucleus

Counting competition. Second, we detect and measure

filopodia from an in vitro assay of HUVEC cells cultured on a

2D collagen matrix, and an in vivo sample of endothelium

from mouse hindbrain. Finally, we demonstrate the

visualization capabilities of Funimage on both the nucleus and

filopodia detection data.

A. Nucleus Detection

Recursive convolution has proven to be useful for

automatically generating image processing pipelines [10]. A

single kernel recursively convolved with varying depth over

an image can serve as a basis for naive search methods.

Machine learning and search methods such as convolutional-

Fig. 1. An example of nuclei detection by searching through

recursive convolution parameters. Top-left, original image;

top-right, target mask; Remaining 4 images are

approximations of the target mask increasing in accuracy from

left to right, and top to bottom.

recursive neural networks can be used to generate, pool, and

cluster features to produce novel image processing classifiers

[10]. Given a target image, recursive convolution can be used

within image processing pipelines to transform an input image

into a resulting image that is close to the target image. Kernels

used for such recursive convolution can even be discovered

with naive search methods, such as Monte Carlo-type hill

climbing. As a visual demonstration Fig. 1a is an original

input image of nuclei from the 2015 Bioimage Nucleus

counting competition. Fig. 1b is a hand-processed target used

during hill climbing search. In Figs. 1c-f are images that were

found to minimize the distance to the target image in order of

increasing accuracy.

B. Filopodia Detection

In these examples we detect cellular protrusions, called

filopodia, in a maximum Z-projection of a confocal image

stack of cultured HUVEC cells plated on a 2D collagen

matrix, as well as an isolectin-B4 stained wild-type mouse

hindbrain (embryonic day 13.5). Here we use an algorithm

inspired by [11]. Consider the in vitro HUVEC image as an

example, the input image (Fig 2a) is thresholded and holes are

filled to obtain a mask. Morphological operations are then

performed to extract the central body of the cells. Upon

obtaining the central body, image subtraction can be used to

obtain an image containing only the filopodia. This is

accomplished with the following code:

(def mask (fill-holes (threshold imp 7)))

(def body (extract-body mask num-iterations))

(def filopodia (imp-subtract mask body))

(def output (merge-imps filopodia body (create-

imp-like body)))

In Fig 2b we show the output image, which is a colored

merging of the filopodia and body images. In Figs 2c-d we

show an in vivo example, where additional preprocessing steps

of despeckling are necessary due to additional background

noise and greater morphological variability. Furthermore, the

combination of noise and loss of information from using a 2D

projection of a complex 3D structure lead to additional

disruptions in extracted filopodia. For these reasons Funimage

extensions are being made available to facilitate 3D analysis

of morphological structures.

C. Visualization

Funimage can also be used to create images for

visualization. In this section we present three examples, one

where nuclei are color coded based upon density, and two

where the filopodia extracted in section B are color coded

based upon length. This functionality is accomplished in two

steps, first the ImageJ particle analyzer is used to extract ROIs

of segments and a mask is created with segments being

assigned their respective measured values. Then, the lookup

table (LUT) color coding functionality of ImageJ is utilized to

assign colors to segments. This same procedure applies for

both cases, where only the measuring method differs. nuclei

color-coded by neighborhood density are shown in Fig 3a,

filopodia color-coded by length are shown in Fig 3b and Fig

3c. The BAR plugin is used to create the corresponding

legends in all figures.

Fig. 2. Examples of filopodia detection. Left, original

maximum Z-projection of confocal image; right, segmented

cell mass (green) and filopodia (red). Top, in vitro cultured

HUVEC cells; bottom, in vivo mouse hindbrain endothelium.

Fig. 3. Visualization of measured attributes with Funimage.

Top, filopodia color coded by length; bottom, nuclei color

coded by neighborhood density.

IV. Conclusion

In this paper we have introduced the Funimage platform for

developing image processing tools. As we have noted,

Funimage utilizes both ImageJ and FIJI, and can be used to

create both ImageJ plugins and stand-alone image processing

programs in the functional programming language Clojure.

This allows developers to rapidly prototype, test, and deploy

customized image processing pipelines. While many existing

pieces of software for biological image analysis are geared

towards experimental biologists, Funimage is designed with

the developer in mind, reducing development time and

maintaining flexibility. We have used Funimage in analysis of

multiple types of biological image data (confocal,

immunohistochemistry stained serial sections, and lightsheet).

Funimage is actively being used in projects across multiple

institutions, and a wide range of scales, demonstrating the

broad applicability of functional programming for image

processing and analysis.

Acknowledgment

Kyle I. S. Harrington is supported by institutional training

grant T32 HL07893 from the NHLBI of the NIH. Timothy

Stiles is supported by the NSF-sponsored Four College

Biomathematics Consortium, Ray and Lorna Coppinger Grant,

FPR-Hampshire College Program in Culture, Brain, and

Development, and the Dr. Lucy McFadden grant.

References

[1] Schneider, C. A., Rasband, W. S., & Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image
analysis. Nature methods, 9(7), 671-675.

[2] De Chaumont, F., Dallongeville, S., Chenouard, N.,
Hervé, N., Pop, S., Provoost, T., ... & Olivo-Marin, J.
C. (2012). Icy: an open bioimage informatics
platform for extended reproducible research. Nature
methods, 9(7), 690-696.

[3] Jones, T. R., Kang, I. H., Wheeler, D. B., Lindquist,
R. A., Papallo, A., Sabatini, D. M., ... & Carpenter, A.
E. (2008). CellProfiler Analyst: data exploration and
analysis software for complex image-based screens.
BMC bioinformatics, 9(1), 482.

[4] Schindelin, J., Arganda-Carreras, I., Frise, E.,
Kaynig, V., Longair, M., Pietzsch, T., ... & Cardona,
A. (2012). Fiji: an open-source platform for
biological-image analysis. Nature methods, 9(7),
676-682.

[5] Hickey, R. (2008). The clojure programming
language. In Proceedings of the 2008 symposium on
Dynamic languages (p. 1).

[6] Steele, G. L. (1990). Common LISP: the language.
Digital press.

[7] Cardona, A.. http://fiji.sc/Clojure_Scripting

[8] Pietzsch, T., Preibisch, S., Tomančák, P., &
Saalfeld, S. (2012). ImgLib2—generic image
processing in Java. Bioinformatics, 28(22), 3009-
3011.

[9] Harrington, K.. Brevis (Version 0.9.86),
http://brevis.us/

[10] Socher, R., Huval, B., Bath, B., Manning, C. D., &
Ng, A. Y. (2012). Convolutional-recursive deep
learning for 3d object classification. In NIPS (pp.
665-673)

[11] Nilufar, S., Morrow, A. A., Lee, J. M., & Perkins, T. J.
(2013). FiloDetect: automatic detection of filopodia
from fluorescence microscopy images. BMC
systems biology, 7(1), 66.

http://brevis.us/

