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Abstract—The challenging problem of filamentary structure
segmentation has a broad range of applications in biological
and medical fields. A critical yet challenging issue remains on
how to detect and restore the small filamentary fragments from
backgrounds: The small fragments are of diverse shapes and
appearances, meanwhile the backgrounds could be cluttered
and ambiguous. Focusing on this issue, this paper proposes
an iterative two-step learning-based approach. Our approach is
rather generic and can be easily augmented to a wide range
of existing supervised/unsupervised segmenters to produce an
improved result. This has been empirically verified on three
specific filamentary structure segmentation tasks including as 2D
and 3D neuronal segmentations, where noticeable improvement
has been shown over the original state-of-the-arts.

I. INTRODUCTION AND OUR APPROACH

This work aims to address the problem of image-based
filamentary structure segmentation in 2D or 3D. In particular,
we focus on the challenging issue of preserving weak fore-
ground signals, i.e., small and thin filaments from ambigu-
ous backgrounds. This problem is fundamental in a rather
broad range of applications including neuronal tracing from
microscopic images [10]. Difficulties of this problem lie in
the high variability of filament shape, texture and thickness,
which is further complicated by the often noisy and cluttered
background that at times could even confuse a trained eye [1].

Existing methods can be roughly categorized into
three types: Hessian-based, model-based and learning-based.
Hessian-based models make use of the second order derivatives
either to guide the development of snake [17], to detect
filament edges [2], or to combine with the eigenvalues [7]
for segmenting filamentary structures. They however often
lack the flexibility to tackle irregular filamentary structures.
Model-based methods instead emphasize on fitting filaments
with known geometric shapes [8], [19], [16]. Learning-based
methods [13], [12], [15], [6], on the other hand, advocate the
automation of the feature learning process.

In addition to the binary segmentation result, many of the
aforementioned methods also produce a pixelwise confidence
map, despite the heterogeneous nature of these methods. A
confidence map is a spatial mapping with each image pixel
assigned a non-negative score, which is larger if this pixel
more likely belongs to the filamentary structure foreground,
or lower if the other way around. This concept has in fact
been adopted by existing methods under different names, such
as vesselness [7] and turbularity score [16], [15]. It has been
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Fig. 1: An illustration of the latent classification tree (LCT) model in step
one: A latent split node which comprises a subset of similar tokens and is
split into multi-branches according to a multi-class classifier; A leaf node
corresponds to a local foreground/background separation problem, with the
set of foreground filaments precisely corresponding to a unique token type,
as displayed in the second row. For each token type, its completion field is
presented in the third row. In the legend: a split node contains a multi-class
classifier, while a leaf node has its local forgeround/background separation
problem.

observed that state-of-the-art methods usually work well on the
long & thick filaments, therefore, placing a sufficiently high
threshold on the confidence map would produce solely true
positive foreground comprising of the main trunk. The obser-
vations inspires us to propose a data-driven learning approach
aiming at boosting the existing methods’ performance on the
low confidence region, where our approach specifically focuses
on detecting and restoring small foreground filaments from
ambiguous backgrounds, a bottleneck issue of many state-of-
the-art methods.

To achieve this, an iterative two-step learning-based
approach is proposed to boost the performance based on a
base segmenter arbitrarily chosen from a number of existing
segmenters:
Preprocessing: Obtain the partial segmentation by placing a
sufficiently high threshold τh on the confidence map. Define
a scanning horizon as epsilon ball B with a searching radius
ε centered around current partial segmentation in the image
space.



Step One: In the remaining low confidence regions within
the scanning horizon B, detect the filamentary fragments
from backgrounds in those pixels with weak confidence in the
range of (τl, τh). This is achieved by a latent classification
tree model. The latent classification tree (LCT) model, as
shown in Fig.1, is learned based on a large number of
distinct local foreground/background separation scenarios,
which are geometrically organized into a tree structure. This
divide-and-conquer strategy not only reduces the complexity
of the original problem but also introduces specific completion
fields encoding the reconstruction guidance. Following the
idea of sketch tokens [9], we identify the separation scenario
in Fig by grouping similar filamentary fragments in terms of
their orientations, shapes and textures as illustrated in Fig.1.
The detected filamentary fragments are on the other hand
usually isolated from the main trunk due to missing edges.
Step Two: Grow current filamentary structure by restoring
the detected filamentary fragments, i.e., connecting them back
to the main trunk. This is achieved by making novel usage
of the matting technique guided with the completion fields of
these filamentary fragments, as in Fig.2.
Progress Check: Update the scanning horizon by increasing
the searching radius ε. Go back to step one if the image space
has not been entirely explored, otherwise terminate.

Confidence map Completion fields 
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Fig. 2: An example of restoring the missing connections between the detected
filamentary fragments and main trunk using the matting technique.

II. EXPERIMENTS

A modified F1 measure to allow minor location offsets
similar to [5], [14] is used as follows: When a segmented
object is not exactly matched to the ground-truth annotation,
it will give a miss as well as a false alarm. In light of
this, we assign each miss pixel the distance of its nearest
false alarm pixel. If there is a nearest false alarm within
deviation range r, the miss pixel is still regarded as a true
positive. The precision is thus computed as tp

t where tp is the
number of true positive pixels and the t is the total number
of positive pixel. In our experiments, the deviation range is
set to r = 1.5 for 2D applications and r = 1.8 for 3D
applications. Following [14], the recall is computed based on
the centreline of the true positive and ground-truth image.
The modified F1 measure is then defined as the harmonic

TABLE I: Performance on 2D Neuronal dataset with different base methods
using modified F1 measure.

Kernel Boost [6] OOF [8] Eigen [7] T2T [3]
Base 84.74 63.50 63.94 66.49
Ours 86.80 66.03 66.85 66.91
% gain 2.06 2.53 2.91 0.42

mean of the precision and recall. In all the experiments, the
best such F1 score is reported. In addition, for 3D neuronal
datasets we evaluate the metric of averaged absolute centerline
deviation (AACD) as follows. Let P and G denote the sets
of predicted and ground-truth foreground pixels, respectively.
Denote a foreground pixel xp ∈ P and similarly a back-
ground pixel xg ∈ G . Define d(xp, xg) the 3D Euclidean
distance between these two pixels. The AACD metric between
the predicted and the ground-truth segmentation is defined
by AACD(P,G) = avg

(
minxp∈P,xg∈G

(
d(xp, xg)

))
, where

avg is an average operator.

Table I shows that on average our approach produces
around 2% performance gain in term of the modified F1
measure. Similar to 2D retinal datasets, our approach is able
to boost the performance over different base methods ranging
from unsupervised [8], [7] to supervised such as [6], [3]. This
is also observed in the follow-up experiments to be described
during 3D neuronal segmentation. Visually our result is often
noticeably better than that of existing methods, as exemplified
in Fig. 3.
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Fig. 3: Performance of 2D neuronal dataset. (a) Input image where the con-
trast has been increased for visual presentation. (b) Ground-truth annotation.
(c) Our method based on [6]. (d) Kernel Boost [6], (e) OOF [8], (f) Eigen
[7]. (g) T2T [3]. True positive is denoted in black, false positive in cyan and
false negative in green.

Experiments are also conducted on the 3D neuronal data
including the Olfactory Projection Fibers (OPF) in DIADEM
challenge [?] and some samples in BigNeuron Project [11]
1.The base methods are OOF [8], Eigen [7], LEFD [4],
Multiscale Enhancement [20] and the gray-weighted distance
transform (GWDT) used in APP2 [18]. We quantitatively
evaluate our method on the OPF dataset which provides the
groundtruth. As presented in Table II when using the modified
F1 measure, our method achieves a performance boost of
2 − 5% over all of existing methods depending on the base
method’s performance. Moreover, a close examination of the
amount of centerline deviation using the AACD metric as

1http://bigneuron.org



TABLE II: Performance on 3D Neuronal OPF dataset with different base
methods using modified F1 measure.

OOF [8] Eigen [7] LEFD [4] mE [20] GWDT [18]
Base method 49.17 52.27 54.50 62.17 66.83
Our method 53.26 57.27 58.56 64.73 68.39
gain % 4.09 5.00 4.06 2.56 1.56

TABLE III: Performance on 3D neuronal OPF dataset with different base
methods using AACD metric (in pixel unit).

OOF [8] Eigen [7] LEFD [4] mE [20] GWDT [18]
Base method 3.4162 6.4849 2.5055 1.6977 1.1638
Our method 1.7860 1.7352 1.5915 1.6161 1.1561

described in Table III reveals that our approach dramatically re-
duce the deviation over the base methods. Fig. 4 demonstrates
that visually our result is closer to the ground-truth than the
comparison methods.

We also illustrate the utility of neuron tracking on some
samples in BigNeuron Project [11]. As illustrated in Fig 5,
our method manges to track the tiny filaments which seem to
be broken from the main branch.
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Fig. 4: Performance on 3D Neuronal OPF dataset. (a) Groundtruth annotation
(b) Our method based on [20], (c) OOF [8],(d) Eigen [7]. (e) LEFD [4]. (f)
multiScaleEhancement [20]. (g) GWDT: [18].

III. CONCLUSION AND OUTLOOK

To address the problem of image-based filamentary struc-
ture segmentation, we propose a value-added approach to
improve over a broad set of existing segmenters, with an
emphasis on addressing the challenging aspect of preserving
small and thin filaments from ambiguous backgrounds. This
is achieve by a learning based iterative pipeline that start
from an initial partial segmentation, to detect filamentary
fragments with a novel LCT model and to restore them back
to the current partial segmentation and repeat until there is no
change in the segmentation result. Our approach is empirically
demonstrated to be capable of improving over a number of
existing methods on very different applications. For future
work, we plan to evaluate on new biomedical applications such
as digital subtraction angiography and magnetic resonance
angiography.
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Fig. 5: Tracing performance on BigNeuron dataset. (a) Input image where the contrast has been increased for visual presentation. (b) The partial segmentation
based on [20]. (c) Our tracing result based on [20]. (d) Tracing result of APP2 [18].


