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Abstract - We study the problem of supervised classification of 

stem cell colonies and confidence estimation of the attained 

classification labels. The problem is investigated in the 

application context of heterogeneity labels of stem cell colonies 

observed by using fluorescent microscopy imaging. Given the 

features of colonies using numerous image statistics, we report 

the classification results using adaptive k-Nearest Neighbor (NN) 

algorithm. This algorithm minimizes typical k-NN classification 

bias by giving more weight to more informative features in 

predicting class posterior probabilities.  We then estimate the 

confidence of each prediction for unlabeled data using 

transductive p-value and strangeness metrics. We show that such 

an introspection can gradually increase the accuracy of learned 

model, quantify false positives, and guide the resource-limited 

manual colony annotation process to provide training labels for 

the less confident unlabeled samples. 

Index Terms— k-Nearest Neighbor, Confidence Estimation 

I. INTRODUCTION 

Recent advances in automated microscopy imaging 

techniques enables scientists to capture large amount of 

imagery to classify cell colony heterogeneity and monitor the 

heterogeneity changes over time. Providing biologists with 

automated classification capabilities is central to gaining 

further insights into human diseases, drug discovery, and stem 

cell treatments. The terabyte-sized image representations in 

stem cell biology necessitate establishment of not only an 

automated qualitative and quantitative characterization of cell 

colony heterogeneity under various biological conditions but 

also the confidence estimation of those automated analyses. In 

this context, automated classification analyses must be robust 

and have an introspection capability of quantifying uncertainty 

for the predicted class labels. In this paper, we use an adaptive 

k-Nearest Neighbor (NN) classification of heterogeneity of 

stem cell colonies, and describe a confidence metric to predict 

the uncertainty of classification. 

II. RELATED WORK 

One area of research in computational cell biology is 

automated characterization of stem cells in stem cell therapies. 

The characteristics include, for instance, colony growth rate 

and function (i.e., pluripotency). The function of a colony can 

be measured via heterogeneity of cells forming the colony and 

their protein expression. This colony heterogeneity is perceived 

as a textured image region that can be labeled manually by 

experts. A common approach to classification in cell 

microscopy images is to use some manually labeled colony 

instances in a supervised setting to generate models. The 

models can be used for future classifications/predictions and 

ideally have good generalization capability. In [7], a supervised 

segmentation technique based on Gaussian Mixture Model 

(GMM) Bayes classifier assigns pixels in sub-cellular images 

into biologically meaningful regions. The biases from such 

model assumptions using GMM are analyzed in [5]. The work 

refutes the conditional independence of cellular visual features 

(intensity, texture, shape). Similarly, the k-Nearest Neighbor 

(NN) classifiers can also suffer from a bias due to the 

assumption of locally constant class conditional probabilities. 

To address this bias one can use an adaptive k-NN algorithm 

proposed in [1]. The adaptive k-NN method considers feature 

relevance while identifying neighbors. 

In addition to the classification bias, we address the 

confidence estimation of obtained classification results which 

requires some knowledge of ground truth labels. It is shown in 

[5] that classification accuracy can be estimated as a function 

of GMM components. However, we need to provide a 

confidence measure based on the uncertainty of a classifier. 

The confidence measure assigns a probability that unlabeled 

test data is misclassified.  

 Another restricting issue with classical supervised learning 

methods is the limited number of labeled instances. An 

insufficient number of training samples (labeled instances) 

often prevents us from learning a classification model with 

good generalization capacity. Furthermore, obtaining 

annotations for training samples, specifically in highly 

specialized areas such as cell biology, requires exact expertise 

and is a time consuming effort. Thus, new paradigms for 

collecting training samples have been proposed to reduce 

human supervision with the goal of increasing learned model 

performance. Many research teams look at using typically 

abundant unlabeled data. For example, active learning methods 

start with a small amount of labeled data and identify the most 

informative unlabeled instances to be labeled by a human 

expert iteratively. In the active learning frameworks, the 

capability of assessing the uncertainty of current classifier’s 

label is essential. A commonly used measure is classification 

entropy [8]. However, entropy is often unreliable due to 

unimportant classes being included in the estimation of label 

likelihood. To address the confidence estimation and 

incorporate the concepts from active learning, we estimate the 

confidence of a classification label using strangeness [3] in the 

context of transductive learning. Transductive learning 

estimates the properties of unlabeled (test) instances directly 

from specific labeled (training) instances. 



III. PROPOSED APPROACH 

In order to understand heterogeneity of cell colonies from 

microscopy images, we explore characterization of stem cell 

colonies represented by groups of image features related to 

textural appearance, shape signatures, and intensity. Using such 

image features, we classify segmented colonies into three 

classes of {homogeneous, heterogeneous and dark}. Next, we 

evaluate the discriminative power of different features to 

predict class labels. This is achieved by adaptively 

emphasizing more relevant features and by applying the 

weighted k-NN algorithm as explored in [4] in order to 

improve classification accuracy.  

To compute the confidence of each classification label, we 

use the strangeness measure to associate a confidence value 

with the output of our weighted k-NN non-parametric 

approach. This confidence value can be used for future 

solicitation of new annotations to improve current performance 

and also as an introspective tool to identify incorrectly 

classified samples. We show that p-value confidence estimates 

can be used for assessing which test data instances may have 

been classified incorrectly. 

Dataset: In our experiments, we consider the annotated 

experimental dataset of stem cell colonies accessible from the 

NIST web interface at https://isg.nist.gov/deepzoomweb/. The 

test data consist of three replicas of stem cell colonies growing 

in a 10 cm dish over a period of five days. The stem cell 

colonies are imaged by using phase contrast and green 

fluorescent protein (GFP) modalities with Oct4 stain used as a 

GFP marker. A total of 396 (18x22) or 320 (16x20) fields of 

view were stitched together to form a large composite image 

(i.e., a mosaic) consisting of hundreds of colonies at each time 

point. Each composite image consists of about 22,912 x 20,775 

pixels with 16 bits per pixel (bpp). The images are segmented, 

and colonies are tracked over time. The example images of the 

colonies are shown in Fig. 1. Each colony represents a 

classification example 𝒙 that is characterized by 74 

dimensional feature vector extracted from each imaging 

modality. We analyze the colony examples formed from the 

GFP imaging modality and characterized by intensity, shape 

and texture statistics. The set of manually annotated colonies 

includes 68 homogeneous, 47 heterogeneous and 24 dark 

samples. Thus, each colony example 𝒙 is associated with its 

label 𝑦 in a training data set.  

IV. K-NN 

K-Nearest Neighbors algorithm (k-NN) is a non-parametric 

method used for supervised classification. An unlabeled 

sample is classified by assigning the label which is the most 

frequent among the 𝑘 training examples nearest to the 

unlabeled sample based on a chosen distance function. The 

class label of a query example is assigned to be the majority 

class label among the retrieved test examples. In the case of a 

tie, the class label with the smallest distance is taken.  

We first normalize all features to have a zero mean and unit 

variance. This is achieved by subtracting mean from each 

sample and normalizing it by the variance. After normalization, 

k-NN and adaptive k-NN classification algorithms are applied 

to the normalized feature dataset. The classification model is 

built by a percentage split of the normalized data into training 

and test subsets.  

We performed the k-NN classification with all 

combinations of the following training percentages {50%, 

60%, 70%, 80%} and 𝑘 values {1, 3, 5, 7, 9}. In our baseline 

experiments we used the k-NN classifier with Euclidean 

distance metric. Average accuracies of the k-NN classification 

using different 𝑘 values and split percentages are shown in 

Table 1.  

   

   
Figure 1) Top: Corrected GFP images of homogeneous, heterogeneous and 
dark colonies. Bottom: The corresponding phase contrast images of the 

colonies in the top row. 

TABLE I.  ACCURACY OF K-NN CLASSIFIER METRIC FOR A RANGE OF K’S AND 

PERCENTAGE SPLITS OF TRAINING DATA 

Split k=1 k=3 k=5 k=7 k=9 

50% 82 77 81 76 79 

60% 80 80 82 83 84 

70% 81 90 87 89 89 

80% 86 92 92 92 92 

V. ADAPTIVE K-NN 

A k-NN classification algorithm assumes a locally constant 

class posterior probability and uses the Euclidean distance to 

compute the nearest neighbors around a query sample. 

However, this assumption is prone to a bias especially around a 

class boundary. Therefore, we examined a locally adaptive 

metric for nearest neighbor classification proposed in [1] in 

which posterior probabilities are adaptive to query locations. In 

this approach, the goal is to estimate the relevance of a feature 

group (or channel) 𝑖 by computing its ability to predict the 

class posterior probabilities locally at the query sample. To do 

so, let us consider a query sample with the feature vector 𝒙𝟎, 

and 𝒙 be the nearest neighbor of 𝒙𝟎 computed according to the 

Euclidean distance. After splitting the input feature vector into 

intensity, shape and texture groups/channels, we compute the 

total weighted distance between the query sample during the 

test phase and training sample according to [2] as follows:  

𝑑𝑤
2 = 𝑤1𝑑𝐼

2 + 𝑤2𝑑𝑇
2+𝑤3𝑑𝑆

2            (1)    

where [𝑑𝐼
2, 𝑑𝑇

2 , 𝑑𝑆
2]𝑡 are the three squared Euclidean distances 

between the intensity, texture and shape channels of feature 

vectors computed at every query sample 𝒙𝟎 with respect to 

training data 𝒙, and 𝑾 = [𝑤1, 𝑤2, 𝑤3]𝑡 ∈ ℜ3 defines the 

weights for the distances of the three feature channels. To 

compute weights 𝑾, first we compute the class conditional 

expectation of posterior 𝑃(𝑗|𝒙) denoted by 𝑃̅(𝑗|𝑥𝑖 = 𝑧𝑖), for 

https://isg.nist.gov/deepzoomweb/


each class label  j = {1,2,3} corresponding to homogeneous, 

heterogeneous and dark class labels, given that 𝑥𝑖 represents 

the 𝑖th
 channel of 𝒙 and assumes value  𝑧𝑖. The ability of 𝑖-th 

feature channel to predict 𝑃(𝑗|𝒛) is defined as follows: 

𝑟𝑖(𝒛) = ∑
(𝑃(𝑗|𝒛)−𝑃̅(𝑗|𝑥𝑖=𝑧𝑖))2

𝑃̅(𝑗|𝑥𝑖=𝑧𝑖)
𝐿
𝑗=1                 (2) 

where L is the number of classes. The smaller the difference of 

these two probabilities, 𝑃(𝑗|𝒛) and 𝑃̅(𝑗|𝑥𝑖 = 𝑧𝑖), the more 

information feature channel 𝑖 carries in predicting the posterior 

probability 𝑃(𝑗|𝒛) locally at 𝒛. The details of estimation of 

P(𝑗|𝒛) using  local neighbourhood of  𝒛 can be found in [1]. 

Given the summation over all class labels for such 𝑟𝑖’s at the 

query point and averaging over all such summations in the 

neighborhood of the query sample, we can compute the feature 

relevance factor 𝑟𝑖̅. The relevance factor measures how well on 

average the class posterior probability is approximated by a 

channel 𝑖 in the vicinity of the query point 𝒙𝟎 

𝑟𝑖̅(𝒙0) =
1

𝑘
∑ 𝑟𝑖(𝒛)𝑧∈𝑁𝑘(𝑥0)    (3) 

where 𝑁𝑘(𝒙𝟎)  is the neighborhood of point 𝒙𝟎. The weight 

calculation is repeated iteratively according to the equation 

below 

𝑤𝑖(𝒙0) =
exp (𝑐 𝑅𝑖(𝑥0))

∑ exp (𝑐 𝑅𝑙(𝑥0
𝑞
𝑙=1 ))

   (4) 

where 𝑅𝑖(𝒙0) =  max𝑗=1,2,3  𝑟𝑗̅ (𝒙0) − 𝑟𝑖̅ (𝒙0)  is the relevance 

of  i-th feature channel (i.e. subset of features) with maximal 

relevance, q=3 is the number of features channels, and here 

c=5 is a parameter that can be chosen to affect the influence of 

 𝑟𝑖̅(𝑥0) on 𝑤𝑖  . The number of all iterations is set to 5. More 

details about the weight computation can be found in [1]. Once 

the weights are computed, the nearest neighbors are retrieved 

using the weighted distance dw in Eq. (1).  In our case, the 

weights are computed for two different percentage splits of 

70% and 80% of training data. The weight distributions across 

colonies of each feature channels, intensity, shape, and texture, 

for the test data are plotted in Fig. 2.  We can see that the 

weights are smaller for the shape feature channel (around 0.2) 

which implies less capacity of the feature channel to predict 

class probability. The texture channel has the largest weights 

between 0.4 and 0.6. The results of adaptive k-NN can be 

found on Table II for all feature channels. While the weight 

computation correctly corroborates our intuition about 

relevance of different feature channels, the absolute values of 

classification accuracy are comparable with Table I. 

VI. CONFIDENCE ESTIMATION USING STRANGENESS 

In this section, the goal is to quantify the confidence of the 

prediction using a strangeness measure. This measure 

characterizes the uncertainty of a sample (instance) with 

respect to its own label and provides the k-NN classifier with 

an introspection ability. For each example 𝒙𝑖 in this dataset, a 

strangeness  𝛼𝑖
𝑦
 with respect to a class y is computed as: 

 𝛼𝑖
𝑦

=
∑ 𝑑𝑖𝑟

𝑦𝑘
𝑟=1

∑ 𝑑
𝑖𝑟
𝑦̅𝑘

𝑟=1

                       (5)  

where 𝑦 is the predicted class label 𝑦𝑖  for instance 𝒙𝑖, 𝑑𝑖𝑟
𝑦

 is the 

𝑟-th shortest distance between a point i and another point with 

class label 𝑦, 𝑑𝑖𝑟
𝑦̅

 is the 𝑟-th shortest distance between point i 

and another point with the class label other than class 𝑦, and 𝑘 

is the number of nearest neighbors considered. The strangeness 

measure is a ratio of the sum of 𝑘 nearest distances from the 

same class to the sum of the 𝑘 nearest distances from all other 

classes. It measures how “strange” an instance in question is 

with respect to its semantic category. An example closer to 

other class instances in comparison to its own class instances 

has higher strangeness and vice versa.    

  
Figure 2) Distribution of learned weights that reflect the relevance of the 

individual feature channels of intensity (top row), shape (middle row), and 

texture (bottom row) for predicting class labels using weighted k-nearest 

neighbor algorithm trained on 70% (left) and 80% (right) of the training 
samples. 

After computing the strangeness, we compute transductive 

p-value statistics according to [3]. The p-value is a measure of 

the probability of obtaining a result equal to or more extreme 

than what was actually observed under the null hypothesis (i.e., 

class label assignment). The p-value quantifies how well the 

data supports our classification hypothesis. The smaller the p-

value the greater the evidence against the hypothesis (a sample 

does not belong to a class) and vice versa. Therefore, by using 

the strangeness values obtained for test data, we can compute a 

p-value measure 𝑡𝑟
𝑦
 for all test samples r with respect to each y-

labeled class as homogeneous, heterogeneous or dark colony 

according to the equation below: 

  𝑡𝑟
𝑦

= ∑ 1{𝛼𝑖𝑦𝑖
>  𝛼𝑟𝑦𝑟

}/𝑛𝑛
𝑖=1

𝑦𝑖=𝑦𝑟=𝑦
                       (6)  

where 𝑛 is the number of instances in the entire training set  

with the label 𝑦 and 1{. } is the indicator function, which is 1 

when the i-th example from the training set of the same class 

has strangeness value greater than the one of the test point 

denoted by r. The p-value 𝑡𝑟
𝑦
 can be viewed as a measure of the 

probability of having instances in the class with strangeness 

greater than or equal to that of test point 𝑟. Using Eq. 5 and Eq. 

6, the strangeness and p-values are computed for all test points. 

TABLE II.  AVERAGE ACCURACIES OF ADAPTIVE K-NN CLASSIFIER FOR A 

RANGE OF KS AND PERCENTAGE SPLITS OF TRAINING DATA. 

Split K=1 K=3 K=5 K=7 K=9 

50% 83 80 82 74 78 

60% 81 79 81  82 83 

70% 79 90 90 87 87 

80% 86 90 96 92 92 



To estimate the confidence in a label from the adaptive k-NN 

classification, we consider a split of the data into 80% training 

and 20% testing samples and use adaptive k-NN described in 

previous section, with k is set to 5. We compute p-values for all 

26 examples in the test set with respect to homogeneous, 

heterogeneous and dark classes (20% rounded down of 68 

homogeneous, 47 heterogeneous and 24 dark). We visualize 

colonies with high p-values which are labeled correctly. 

Visualization of the p-values for different examples and with 

respect to homogeneous and heterogeneous classes can be seen 

in Fig. 3. Note that in all the test examples True Positives have 

a transductive p-value greater than 0.5. This indicates that the 

p-value can be effectively used for quantifying which examples 

are true positives. The color coding shows that examples with 

high p-values are often true positives (TP), while examples 

with low p-values with respect to the class are mostly true 

negatives (TN) and a few are false positives (FP) and false 

negatives (FN). The colonies with p-values less than 0.2 were 

misclassified by adaptive k-NN classifier for k=5 and split 

80%. Their images are shown in Fig. 4. The vertical lines in 

Fig. 3 separate indices of homogenous, heterogeneous and dark 

test examples. By association of p-value estimates with 

classification output, we can estimate which test samples might 

have been classified incorrectly.  
 

 

 

 

 

 

Figure 3) P-values for the subset of samples (replica #1) in the test dataset 
with respect to homogeneous (top) and heterogeneous (bottom) computed for k 

= 5 and split 80%. The color schema in the legend corresponds to combinations 

of p-value ranges and classification evaluations (TP=true positive, TN=true 
negative, FP=false positives, and FN=false negatives). 

VII. CONCLUSION 

We have demonstrated the effectiveness of k-NN and 

adaptive k-NN classifiers together with their per sample 

confidence estimates. Observing the p-value confidence 

estimates enabled us to assess which examples may have been 

classified incorrectly. Fig. 4 illustrates examples of the 

incorrect classification of a homogenous colony due to the 

inappropriate choice of the parameter 𝑘 for the k-NN classifier. 

Using k=5 for these examples the three most distant neighbors 

were from incorrect classes, while with k=2 the examples were 

correctly classified. This suggests that choosing the parameter 

k adaptively per example may be more appropriate.  

   

   
Figure 4) Phase Contrast (top) and GFP (bottom) images of three test 

colonies which have lower p-values than 0.2 within classes and are 
misclassified. Left: Colony index 15 in heterogeneous p-value plot is 

misclassified to homogeneous (FN with p-value < 0.2). Middle: Colony index 

21 is a heterogeneous colony that is misclassified to homogeneous (FP with p-
value < 0.2). Right: Colony index 8 in the homogeneous p-value plot is 

misclassified to heterogeneous (FN for homogenous class).  

VIII. DISCLAIMER  

Commercial products are identified in this document in 

order to specify the experimental procedure adequately. Such 

identification is not intended to imply recommendation or 

endorsement by the National Institute of Standards and 

Technology, nor is it intended to imply that the products 

identified are necessarily the best available for the purpose. 
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