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Abstract—Synapse detection and characterization is an 

indispensable component of today’s brain research. Recent 

biotechnical progress makes the synapse data widely available to 

many labs and have never been easier to generate. Awkwardly, the 

progress in analytical approaches lags far behind. From our 

experience of real studies we found the performance of existing 

algorithms are far from satisfactory, with either high false 

positives or high false negatives, due to the large noise in bioimage 

data, imperfection in the probe selectivity and heterogeneity in the 

signal intensity. We realized that the existing algorithms lack 

rigorous probability foundation to battle with the stochastic 

nature of synapse data. In this paper, we report a new method 

named Probability Principled Synapse Detection (PPSD) to 

reliably detect synapses through a build-up of a series of accurate 

probability models and strategies, ranging from estimating and 

stabilizing noise variance, designing test scores using order-

statistics theory, and devising an iterative and adaptive 

thresholding strategy to locate candidate regions. We tested the 

proposed method on extensive simulation and real studies and the 

results are very encouraging with significantly higher sensitivity 

and specificity than peer methods. 

Index Terms— synapse detection, iterative and adaptive 

thresholding, order statistics, variance-stabilizing transformation. 

I. INTRODUCTION 

Synapse is the critical structure in the nervous system that 

enables the communication and interaction between neurons. 

Thorough and accurate characterization of synapse is vital to 

understanding how normal brain works and how diseased brain 

goes wrong, as cognitive function hinges on proper wiring and 

connection in the neuronal circuits through synapse [1, 2]. 

Recent advances in imaging technique and probe design make it 

realistic to image the synapses at high resolution and large scale. 

With the increased capacity of data generation, the bottleneck 

shifts to the analysis and extraction of information from the data, 

in which synapse detection is one of the major tasks. 

In this paper, we limit our scope to the light microscopy 

based synapse detection and the electron microscopy will not be 

discussed. There are a few synapses detection algorithms 

designed for light microscopy data. Among them, SynD [3] is 

the most widely used one in the community, to our best 

knowledge. However, in addition to the requirement of the 

neurite mask, SynD uses a single threshold and the 

deconvolution approach will produce a lot of false signals when 

the image is noisy or the staining is not highly selective. Feng [9] 

proposed a method to separate synaptic punctas that are 

clustered together based on the shape and brightness property of 

synapse using a Bayesian Gaussian mixture model. Again, this 

method uses a single threshold to segment the image and the 

foreground part is used to find synapses. However, our 

experience is that very often there is no single threshold fit to all 

synapses. In contrast, both SynPAnal [4] and Fish [5] used 

multiple thresholds to segment the synapse. Yet, none of the 

algorithms provided rigorous statistical quantification to assess 

the detected synapses and the whole procedures were rather ad 

hoc. It is hard for users to determine which region should be 

regarded as true candidate synapses, when the detected regions 

should be separated, or when a smaller part should be extracted 

from a larger one. 

The overarching theme that is lacking in the existing 

algorithms is the adoption of probability principle in an 

integrated way. We argue that a good approach for synapse 

detection should be based on accurate probability models in all 

steps. The adoption of probability principle is particularly 

pressing for this task, considering the fact that light microscopy 

data often has low signal-to-noise ratio due to the limits of 

biological probes or immuno-histochemical staining [8].  

Here we developed a new synapse detection algorithm, 

Probability Principled Synapse Detection (PPSD), by building 

accurate probability models. PPSD has two unique features.  

First, in order to simultaneously detect thousands of 

synapses whose signal intensities and contrasts may be 

considerably different, an iterative and adaptive thresholding 

scheme was designed. Importantly, different from the multiple-

threshold algorithms SynPAnal [4] and Fish [5], which select as 

synapse the region passing the highest threshold, PPSD finds the 

region with the strongest statistical evidence (smallest p-value 

under the null hypothesis that it is pure noise). Indeed, a region 

with multiple moderately bright pixels is more likely to be a 

synapse than a region with a single brighter pixel.  

Second, we propose to use order statistics as a key 

component of algorithm to determine the statistical significance 

of each candidate region. The conventional t-test between a 

group of candidate pixels and their neighbors is not correct since 

the thresholding operation has already changed the null 

hypothesis. A candidate region always has higher average values 

than its neighbors by definition.  

Besides, since the order-statistics based approach requires a 

homogeneous variance of each individual pixels and estimate of 

the variance, we estimate and stabilize the variance using a 

Poisson Gaussian model [7]. 

This paper is organized as follows. In Section II we describe 

our detection algorithm. In Section III we present the simulation 



results and the results from a real-world co-culture data set. After 

making discussions in Section IV, we summarize the paper in 

Section V. 

II. METHODS 

The flow chart of PPSD is shown in Fig.1. We first transform 

the image by variance-stabilizing transformation and then noise 

variance is estimated. Multiple scans at thresholds from low to 

high are then performed. For each threshold the significance of 

each region is computed by order statistics. Each time one best 

candidate is selected. After that, the algorithm post processes the 

data with some synapse filtering rules like size and intensity. 

A. Transformation and noise variance estimation 

Statistical tests require the knowledge of noise variance. This 

information can be acquired either locally or globally. The local 

approach picks the samples near the ROI and compute the 

variance based on those samples while the global method uses 

the whole image. For local t-test, the variance is considered in 

computing the test statistics. For order statistics based 

significance tests, the variance is explicitly needed. A local 

variance estimates can be unreliable due to the limited sample 

size near the putative synapses and a global estimate is more 

desirable. 

  
Figure 1. Flow chart of PPSD. (a) The original mask uses all pixels. (b) For 

each region from each threshold, a z-score is computed from the region 

(yellow) and its neighbors (blue). (c) For all the regions, find the one with the 

highest z-score. (d) Within the region with the highest z-score, we search 
across thresholds for potential sub regions. If succeed, the sub region will be a 

candidate synapse. (e) A new mask excluding all candidate synapses previously 

found are computed. (f) All candidate regions are gathered and filtered by rule 
1: size and intensity. (g) The remaining regions are filtered by rule 2. 

 

        We start by estimating the mean dependent noise variance 

[7]. Each pixel is modelled as, 

 var(𝑦𝑖,𝑗) = 𝑎𝑥𝑖,𝑗 + 𝑏. (1) 

Here (𝑖, 𝑗) is the pixel coordinate and var(𝑦) is the pixel noise 

variance. 𝑥 is the true underlying signal intensity, which is not 

observed. This item models the Poisson type noise and 𝑏 

models the additive Gaussian noise. The model is fit using 

single image and the resulting 𝑎  and 𝑏  are used in the 

generalized Anscombe transform [7] to stabilize the noise. 

B. Order statistics based significance test 

In our adaptive thresholding algorithm, for each threshold 

we will select a set of isolated regions and each of the regions 

has some pixels. These regions are potential synapses that need 

to be determined by statistical tests. An individual test is based 

on the difference of a single region and its neighbor pixels. A 

larger difference implies a larger possibility that this region is a 

synapse.  For each region, a group of neighbor pixels are 

selected. Assume there are 𝑀 pixels {𝑥1, … , 𝑥𝑀} in the region 

and 𝑁  pixels {𝑥𝑀+1, … , 𝑥𝑀+𝑁}  in the neighbor. Due to the 

thresholding operation, all the 𝑀 pixels have higher intensities 

than the 𝑁 neighbors. Even there is no synapse, some positive 

difference exists between the means of the two groups, which is 

undesirable. Thus we define the test statistic as 

 
𝐿 =

𝑥1 +⋯+ 𝑥𝑀
𝑀

−
𝑥𝑀+1 +⋯+ 𝑥𝑀+𝑁

𝑁
, (2) 

where 𝑥1 ≥ ⋯ ≥ 𝑥𝑀+1 ≥ ⋯ ≥ 𝑥𝑀+𝑁 . Without synapse, 𝐿 will 

be positive, and the exact value is determined by the noise 

variance, the sample size and the ratio of 𝑀 to 𝑁. The mean and 

variance of 𝐿 is calculated using the theory of asymptotic order 

statistics. Let 𝑛 = 𝑀 + 𝑁, we rewrite 𝐿 as in [6]: 

 
𝐿 =

1

𝑛
∑𝐽 (

𝑖

𝑛 + 1
) 𝑥𝑖

𝑛

𝑖=1

. (3) 

So for 1 ≤ 𝑖 ≤ 𝑀, 𝐽 (
𝑖

𝑛+1
) =

𝑛

𝑀
, and for 𝑀 + 1 ≤ 𝑖 ≤ 𝑀 + 𝑁, 

𝐽 (
𝑖

𝑛+1
) =

𝑛

𝑁
.  This summation need to be approximated by 

integration. Let 𝑢 = 𝑖/(𝑛 + 1), we define 

 
𝜇(𝐽, 𝐹) = ∫ 𝐽(𝑢)𝐹−1(𝑢)𝑑𝑢

1

0

, (4) 

and 

 𝜎2(𝐽, 𝐹)

= ∬
2𝐽(𝑢1)𝐽(𝑢2)𝑢1(1 − 𝑢2)

𝑓(𝐹−1(𝑢1))𝑓(𝐹
−1(𝑢2))

𝑑𝑢1𝑑𝑢2.

0<𝑢1<𝑢2<1

 
(5) 

Then we have 𝐸(𝐿) = 𝜇(𝐽, 𝐹)/√𝑛  and 𝑣𝑎𝑟(𝐿) = 𝜎2(𝐽, 𝐹)/𝑛 , 

when 𝑛 → ∞ [6]. Here 𝑓 is normal probability density function 

with zero mean and variance estimated as above. 𝐹−1  is the 

corresponding inverse normal cumulative distribution function. 

The integration is computed by summation using all the 𝑛 

samples. The above computation is valid when the sample size 

is large enough, which may not be the case since one synapse 

may only contain about 10 or less pixels, depending on the 

image resolution. Here we apply two corrections for the small 

sample size. First we notice for the double integration in 

𝜎2(𝐽, 𝐹), the integration space is a triangle defined by 0 < 𝑢1 <
𝑢2 < 1 . Since we are using discrete samples, the boundary 

points will noticeably impact the integration results. So half of 



the boundary points are incorporated in the integration and the 

other half are not. 

The integration over 𝐽  is based on a uniform grid, which 

correspond to the 𝑥  values. However, the boundary points 𝑥1 

and 𝑥𝑛 strongly deviate from this uniform assumption and the 

results will be affected when the sample size is small. We hope 

the integration can mimic the summation. Therefore we compute 

the distribution of the largest (or smallest) sample and use the 

mean to get new grid. This mean value 𝑑 is computed by 

 
𝑑 = 1 − 𝐹(𝐸(𝑥1)) = 1 − 𝐹(𝑛∫ 𝐹−1(𝑡)𝑡𝑛−1𝑑𝑡

1

0

). (6) 

       Here 𝑡 should be densely sampled from 0 to 1. Then we get 

a new grid [𝑑, … , 𝑑 + (𝑖 − 1)
1−2𝑑

𝑛−1
, … ,1 − 𝑑]. 

C. Iterative Detection and post processing 

Our iterative synapse detection scheme is driven by the 

statistical significance of each region, which tries to find the 

region that has the best contrast with its neighboring pixels. 

After stabilizing the variance and estimating the global noise, we 

scan from a lower threshold to a higher one with a suitable step 

size. For each threshold, some regions with enough pixels will 

be selected and a z-score is computed based on each of these 

regions and its neighboring pixels using order statistics, as 

discussed above. Across all thresholds the region with the 

highest z-score is chosen. Then an inner loop is applied on this 

selected region and the neighbors are restricted to reside within 

that region. If something significant is found within that region, 

the significant subset is regarded as candidate synapse(s). 

Otherwise the region itself is treated as a candidate. Then we 

remove the candidate(s) and repeat the thresholding steps. The 

statistical significance is based on the Bonferroni correction 

using all the regions within all the thresholds at this iteration. 

This is conservative since across different layers the overlapped 

regions may be highly correlated.  

        Several rules based on the prior knowledge of the size and 

relative positions of synapses are applied to the candidates found. 

First a synapse should not be too large. Otherwise it is likely to 

be areas with elevated background intensity, such as in soma or 

dendrites. Second if some region is surrounded by other regions 

and the surrounding one has smaller values, the surrounding 

ones should be discarded. The remaining candidates are reported 

as synapses. 

III. RESULTS 

A. Simulation with pure noise 

In order to compare local t-test to PPSD in terms of false 

positives, we simulate an image of size 1024 × 1024 and add 

additive Gaussian noise with zeros mean and unit variance.  The 

threshold scans from 1.2 to 1.8 with step size 0.2. Ideally no 

synapse should be identified in this image with pure noise. Here 

we assume the noise variance level is already known. We count 

within all layers the total number of candidates given by the 

threshold and those pass the Bonferroni-corrected significance 

level of 0.05. Totally we get 2574 candidates. PPSD have only 

12 candidates pass the significance threshold while t-test will 

generate 1310 false positives. So t-test is not capable of dealing 

with false positives in thresholding based methods (Table I). We 

also observed that the control of the false positives for our 

method is conservative, which is likely due to the correlation of 

scores between overlapped regions as discussed above. Then we 

repeat the experiment with a poorly estimated noise variance of 

0.5. Then both tests generates many false positives. This 

confirms the importance of noise variance estimation in 

evaluating the significance level. 

TABLE I.  FALSE POSITIVE RATE  

Noise variance T-test Order Statistics 

1, True noise variance 0.5433 0.00466 

0.5, a poor estimates 0.5392 0.424 

B. Simulation with simulated dendrites and synapses 

To study the performance of detecting synapses, we 

designed a realistic simulation. First we select dendrites based 

on a real Tuj1 labelled neuron image. Each dendrite is assigned 

a brightness level randomly to make it close to real image. Then 

for each dendrite, we randomly put synapses onto it. The number 

of synapses on each dendrite is proportional to the length of it. 

The synapse intensity is determined by the dendrite it located. 

So the synapses on the darker dendrites will also look darker. 

For simplicity, all synapses here are squares with 25 pixels each. 

The results are shown in Table II. 

   

Figure 2. Left: simulated synapses. Middle: detection results by PPSD. Most 
synapses are found and we have only several false positives Right: results 

from SynD with thr=1. Many synapses are missed. 

        We first compare the performance of traditional single 

threshold based detection algorithm and PPSD algorithm. For 

single threshold method, no statistical test is applied. The 

precision and recall is computed for each threshold and the 

threshold corresponding to the best F1 score is given. The F1 

score is the harmonic mean of precision and recall. 

        PPSD can achieve much better precision and recall 

performance than the single threshold based methods, which 

sacrifice either precision or recall. The detected synapses are 

shown in Fig.2. Although when multiple thresholds are used, t-

test produces a good recall by selecting more synapses, 

however, the precision is very low. The single threshold method 

SynD can detect similar number of synapses as t-test, but the 

de-convolution approach reports a much large number of 

synapses, which lead to lower precision. 

C. Neuron astrocyte co-culture data 

We apply PPSD to a neuron astrocyte co-culture image. The 

image includes three channels, the blue channel is for nucleus 

staining with DAP1, the green channel is for synapse labeling 

by synapsin I and the red channel is for neurite labeling with 



Tuj1. Here we only use the green channel to detect the synapse, 

although we can further use the Tuj1 channel to filter out the 

noise parts far away from the neurites. 

TABLE II.  PRECISION AND RECALL 

Method Precision Recall F1 score 

PPSD 0.91 1 0.95 

Multi threshold and 
t test 

0.47 0.94 0.63 

Single threshold, no 

significance test 
0.89 0.48 0.62 

SynD Thr=1 0.33 0.54 0.41 

SynD Thr=1.5 0.52 0.34 0.41 

 

Under default settings, 1003 synapses are detected, which 

are labelled in red in Fig.3 (left and middle). The synapse centers 

are chosen as the pixel with the largest intensity in each synapse, 

which are labelled as blue dots. Most synapses are detected even 

without the help of neurite mask and very few false findings 

exist. We also apply SynD, which identifies a lot of synapses in 

the noise regions, as shown in Fig.3 (right). Though there are 

several other tools [4, 5, 7] that can be used to detect synapses 

and we have not compared them with our method yet, we need 

to emphasize that none of them is able to provide a statistical 

evidence of the detected synapse and the selection of synapse is 

based on an ad hoc approach. 

   

Figure 3. Left: detection results on the synapsin I channel of the co-cultured 
image. Middle: the blue square in the left. Minimum size of synapse is set to 

four pixels. The significance threshold is 0.05 after Bonferroni correction. 
Candidates whose size is larger than three times the typical synapse size (1 

𝜇𝑚2) or with too small means intensities (30 here) are discarded. Right: SynD 
on the same area. Many synapses are detected on the noise parts. Some dark 

parts are not detected due to the single threshold. 

IV.        DISCUSSION 

        The statistical measure in PPSD is the difference between 

the synapse and its neighboring pixels, instead of the 

probability of being a synapse, although they are tightly 

connected. First, since some properties of synapse like shape 

and position are not modelled in our statistical framework 

(although they are considered in the post processing step), the 

proposed framework may not be able to find the probability of 

being a synapse. Second, the p-value here should not be simply 

understood as the probability of an area of being a synapse. To 

achieve this goal, we need to define an alternative hypothesis, 

which is out of the scope of this paper. 

        PPSD can deal with different noise levels since it is fully 

probabilistic driven. When an image has a large estimated noise 

level , the null hypothesis will be more difficult to reject, which 

leads to less significant p-value for each area. The larger the 

noise, the less synapse will be selected for a given threshold. 

With noisier images, more false negatives are inevitable in 

order to control the number of false findings, especially given 

the conservative p-value reported by PPSD. For extremely 

noisy image, even no areas can pass the significance threshold. 

        Some imaging effects can be included in PPSD by linking 

them to noise variance. The quality of illuminance is related to 

the noise level since less than adequate illuminating time will 

lead to lower signal to noise ratio. Besides, the requirement for 

micro contrast is also directly related to the noise level. If the 

micro contrast around a synapse is small comparing with the 

noise variance, that synapse will have a less significant p-value. 

Simulations for various conditions and more data sets are being 

performed and are not shown here due to space limitation. 

        However, when the antibody is not specific, PPSD cannot 

tell which one is synapse and which is not. This kind of 

conditions need to be handled case by case. Besides, when the 

synapses in the cluster do not have clear boundary, which is 

quite common, the algorithm in [9] can be used as a post 

processing step to split the cluster to individual synapses.  

V. SUMMARY 

        In this paper, we proposed PPSD method to detect synapse 

in a rigorous and probability-principled way. Simulation shows 

that our approach is both more sensitive and specific than 

existing methods. The results on real images show that our 

method can detect most synapses without being affected by 

noisy regions. 
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