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Abstract

We present an optimization methodology for improving
the measurement accuracy of image features for low signal
to noise ratio (SNR) images. By superimposing known back-
ground noise with high quality images in various propor-
tions, we produce a degraded image set spanning a range
of SNRs with reference feature values established from the
unmodified high quality images. We then experiment with a
variety of image processing spatial filters applied to the de-
graded images and identify which filter produces an image
whose feature values most closely correspond to the refer-
ence values. When using the best combination of three fil-
ters and six kernel sizes for each feature, the average cor-
relation of feature values between the degraded and high
quality images increased from 0.6 (without filtering) to 0.92
(with feature-specific filters), a 53% improvement. Select-
ing a single filter is more practical than having a separate
filter per feature. However, this results in a 1.95% reduc-
tion in correlation and a 10% increase in feature residual
root mean square error compared to selecting the optimal
filter and kernel size per feature. We quantified the tradeoff
between a practical solution for all features and feature-
specific solution to support decision making.

1. Introduction
Image features are computed in cell biology to extract

quantitative information regarding cell state, differentiation,
biological activity, and cell dynamics. The motivation for
our work is the improvement of measurement accuracy for
image features extracted from time-lapse fluorescent im-
ages of stem cell colonies. Due to cell sensitivity to light,
only brief low intensity light could be used to excite fluo-
rophores, producing images with low signal to noise ratios
(SNRs) and hence resulting in questionable accuracy of im-
age features.

Our objective is to mitigate the effects of image noise
on extracted features via image de-noising (filtering) with
respect to quantitative metrics. Quantitative imaging can

play an important role in scientific experiments as a means
to monitor and communicate behavior of complex systems
(e.g. cell colonies) by recording features extracted from ob-
jects of interest. An image feature is a function whose input
is an image. Ideally, the image itself is representative of the
current state of the biological system being imaged such that
changes in the images are representative of changes in the
system. In such cases, image features can provide useful
summaries to help monitor and communicate the systems
behavior. However, when images have a low SNR, poor fo-
cus, or other distortions, the information extracted via fea-
ture evaluation may not reflect the behavior of the underly-
ing system. That is the ability to extract meaningful image
feature values is linked to the quality of the acquired im-
ages. Unfortunately, due to experimental constraints ideal
high quality images can be time consuming to acquire, im-
practical, expensive, or damaging to the specimen. This
forces the acquisition of lower quality images. Image pro-
cessing algorithms can help mitigate measurement inaccu-
racies caused by low quality images. The difficulty lies in
selecting which image processing algorithms to apply for
a given feature measurement. We are interested in deter-
mining the ordered set of image processing operations that
result in images whose feature values convey similar mean-
ing to those of the same image if it was of higher quality, in
other words, having clear signal and negligible noise.

In this paper, we focus on the effects of image noise,
as opposed to other factors that may degrade image qual-
ity. Image features measured from images with low SNRs
can be very poorly correlated with ground truth feature val-
ues, defined as those extracted from the same signal im-
ages with minimal noise. Any conclusions and insights
based upon those feature measurements can be unreliable
and biased. As SNR decreases the meaningful signal varia-
tions among the different images becomes lost to the noise.
As a result, the extracted features begin to characterize
the behavior of the noise instead of the signal. Ground
truth features should be measured from very high SNR
images so feature values are predominantly a function of
signal only, and minimally influenced by noise. Differ-
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ent types of features might display various robustness to
noise. These effects should be investigated before inter-
preting the features. Figure 1 shows the effect of im-
age noise, displaying a feature value scatterplot for Tex-
ture.Average.ENTROPY at an SNR of 2, plotting the mea-
sured values against the ground truth values. The red y = x
line with a slope of 45 ◦ denotes where the measured fea-
ture value (y-axis) is equal to the ground truth feature value
(x-axis). With a correlation value of ρ = 0.584 there is
only a vague linear relationship between the measured and
ground truth values. All features are drawn from Bajcsy
et al. [1] and their mathematical definitions are available at
https://isg.nist.gov/deepzoomweb/stemcellfeatures.

Figure 1. Example low quality (SNR of 2) image feature measure-
ments which do not correlate well with ground truth. The cor-
relation (ρ) between measured and ground truth feature values is
0.584. The red y = x line with a slope of 45 ◦ denotes where the
measured feature value (y-axis) is equal to the ground truth feature
value (x-axis).

Previous research has addressed either image quality as-
sessment or the accuracy of feature based application spe-
cific results. The intermediate step of analyzing feature
quality has been neglected. Image quality assessment uti-
lizes two types of metrics, those based on quantitative de-
viation from ground truth (SNR, PSNR, MSE [19]) and
those designed to mimic human visual perception (FSIM
[19], RFSIM [18], MS-SSIM [15], SSIM [14]). In order to
evaluate the quality of de-noised images researchers have
created synthetic noise models and optimized the selec-
tion of de-noising algorithms over using synthetic images
[2, 6, 7, 11, 12, 13, 17]. In contrast, we leverage measured
images, both high quality ground truth signal and noise. We
then create evaluation data based only on measured images.
Our methodology of operating on image features is less de-
pendent upon the final application problem.

This paper presents an experimental optimization
methodology for improving the measurement accuracy of
image features. This methodology consists of four steps:
(1) sequester a small subset of the specimen and acquire
a set of reference signal images with the highest quality

(SNR) possible, (2) acquire a set of background noise im-
ages typical of the target experiment, (3) combine the high
quality images and the background noise images to create a
set of pseudo-real images with an SNR typical of the target
experiment, and (4) optimize the application of an ordered
set of image processing algorithms in order to maximize the
correspondence in feature values measured from the refer-
ence signal images and the pseudo-real images.

The low SNR (pseudo-real) images mimic those of the
target experiment but contain a known signal component.
Therefore features computed from the pseudo-real images
can be compared with features computed from the refer-
ence signal images. This enables the design, optimiza-
tion, and refinement of the target experiment image pro-
cessing pipeline with respect to accurately measuring the
image features of interest. Figure 2 shows an overview of
the proposed methodology. The reference signal and mea-
sured noise images are combined into a pseudo-real image
typical of the target experiment. Multiple image process-
ing pipelines are applied to the pseudo-real image generat-
ing processed images. Features are then extracted from the
processed images and compared to feature values extracted
from the reference signal images.

Figure 2. Overview of the methodology for improving the accu-
racy of measured image features. The reference signal and mea-
sured noise images are combined into a pseudo-real image typical
of the target experiment. The pseudo-real image is passed through
an image processing pipeline to generate a processed image. Fea-
tures are extracted from the processed image and compared to
features extracted from the reference signal image, enabling the
evaluation of several processing pipelines to determine which im-
proves the accuracy of the extracted features best.

Pseudo-real images (created by combining measured im-
ages) are preferable to synthetic images (created entirely
from computer simulation of signal and noise models) be-
cause they are more relevant to the imaging experiment in
question. Both pseudo-real images and synthetic images
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contain a known signal component enabling comparison to
ground truth. However, the synthetic image noise model
might not match the target imaging experiment. By relying
on experimentally observed reference signal and noise the
pseudo-real images avoid this problem. The downside of
the pseudo-real images is that any noise present in the ref-
erence signal images cannot be overcome, setting an upper
limit on the improvement in feature measurement accuracy.
By allowing the experimentalist to define the reference sig-
nal and the expected noise the image quality model can be
reduced to just SNR, assuming the selection of reference
signal images is such that the underlying population of sig-
nal profiles is sufficiently narrow that the optimal filter is
principally a function of SNR and not the signal itself. In
cases where that is not true, the reference image set can be
refined until the assumption is met. If required, this method-
ology can be performed multiple times to optimize filter se-
lection for each sub-type of signal. Other factors affecting
filter selection, which might be experiment dependent, will
be defined by the experimentalist as part of acquiring the
reference signal and noise images.

2. Methods
This experimental methodology for increasing image

feature measurement accuracy consists of two major stages.
The first stage is the creation of the pseudo-real images and
the second stage is the optimization and evaluation of the
image processing required to increase the accuracy of the
measured image features in generated pseudo-real images.

2.1. Pseudo-Real Image Creation

In order to evaluate the accuracy of extracted image fea-
tures, a known reference signal similar to ones own exper-
iment is needed. Such a signal is acquired by imaging a
representative subset of the experimental specimen with the
highest image quality possible. Since this sample is not be-
ing relied upon for the actual experiment feature data, it is
not subject to the same experimental constraints which limit
image quality. For example, a longer exposure time than
is practical for the real experiment could be used. These
high quality images are called the reference signal because
they contain the reference foreground signal from which the
ground truth image features are extracted.

The next step is to acquire a sample of the background
noise expected in the target experiment. These background
images should mimic all noise sources in the target experi-
ment while containing no foreground data. This is done by
imaging a background area with the same acquisition setup
as used in the actual experiment.

The pseudo-real images are created by combining the
reference signal and measured background noise images.
Thus the pseudo-real images mimic the expected target ex-
periment images while containing a known reference signal

component. They are created by multiplying the reference
signal images by a scalar and then adding the background
noise. The following procedure is used to create the pseudo-
real images with a desired SNR.

1. Compute the mean of the foreground pixels (as iden-
tified by segmentation), µF , from the reference signal
image, IF .

2. Compute the standard deviation of the background pix-
els, σB , from the background noise image, IB .

3. Given a desired SNR value of k for the pseudo-real
image, compute the rescale factor (k ∗ σB)/µF .

4. Multiply the reference signal image by the rescale fac-
tor then add the background images, Ik = k∗σB

µF
×IF+

IB .

This pseudo-real image creation procedure is shown in
Figure 3. The formula used to identify the rescale factor
for a specified SNR is derived from the Rose criterion as
described in [16].

Figure 3. Diagram outlining the pseudo-real image creation. The
reference signal (foreground) image is scaled by a factor (k ∗
σB)/µF and added to the measured background noise image to
create a pseudo-real image with a specified SNR value. Note: all
displayed images were auto-contrasted using the same algorithm
for visual clarity.

2.2. Process Optimization

We then determine an ordered set of image processing
operations required to improve the feature measurement ac-
curacy. Ground truth feature values are measured from the
reference signal images, denoted Reference. These are then
compared with features measured from the pseudo-real im-
ages after processing, denoted Processed. Correlation (ρ),
described by Eq. (1), is used to compare sets of feature val-
ues.



ρ =
cov(Processed,Reference)

sd(Processed) ∗ sd(Reference)
(1)

The correlation coefficient measures the linear relation-
ship strength between the processed feature values and their
corresponding reference values. A correlation coefficient of
1 indicates that there are scalar values a > 0 and b such that
the equationReference = a∗Processed+b holds exactly.
When primary interest lies in the relative sizes of pairwise
distances among any set of points, as opposed to the exact
values of the features themselves, correlations near 1 can be
interpreted as meaning the two quantities are nearly equiv-
alent.

3. Experimental Results

This section presents experimental results obtained by
applying the proposed optimization methodology to cellu-
lar microscopy images. There are many factors involved
in keeping cells alive, but with respect to imaging, preven-
tion of photo-toxicity is the important one. It is desirable to
have the highest SNR images possible to discern biological
information with the highest fidelity. However, acquiring
these high SNR images requires exciting the fluorophores
within the cells with high-intensity light. This exposure
damages or kills the cells (due to photo-toxicity) and causes
accelerated photo-bleaching of the specimen. Note that we
are mainly concerned with fluorescent imaging modalities
where the sample must be probed with excitation light. For
transmitted light modalities photo-toxicity is less of a con-
cern. Thus, our primary interest lies in strategies to bal-
ance the competing interests of using minimally invasive
imaging techniques to avoid affecting cell behavior or sur-
vival and acquiring high quality images which contain the
required information.

3.1. Measured Microscopy Images of Cells

The target imaging experiment consists of a time-lapse
acquisition of the H9 human embryonic stem cell (hESC)
line over the course of 5 days on a microscope equipped
with a controlled environment incubation chamber (Kairos
Instruments LLC, Pittsburgh, PA). This cell line was en-
gineered to produce green fluorescent protein (GFP) under
the influence of the native OCT-4 promoter using a pub-
lished homologous recombination plasmid construct devel-
oped by the James Thomson lab [20] and obtained from Ad-
dgene (Addgene, Cambridge, MA). Experimental imaging
is performed using a Zeiss 200M microscope (Carl Zeiss
Microscopy, LLC, Thronwood, NY) every 45 minutes via a
Coolsnap HQ camera (Photometrics, Tucson, AZ) in a grid
of 16×22 field of views (FOVs) with 10% overlap covering
approximately 180 mm2. Each individual FOV (image) is
1040× 1392 pixels.

The individual target experiment images are stitched into
a single mosaic per time point using MIST (Microscopy Im-
age Stitching Tool) [3]. Foreground and background masks
are generated by segmenting the phase-contrast stitched
images using the Empirical Gradient Threshold technique
[5]. The stitched mosaic images are flat-field corrected and
background subtracted [4]. Using the foreground masks a
set of 61 intensity and texture image features, taken from
[1], are extracted from each colony. The intensity features
are statistical moments: mode, mean, mode, standard devia-
tion, skewness, kurtosis, etc. The texture features are based
on Haralick texture features [10] which generate four val-
ues per feature type, the average amplitude, principle com-
ponent angle, orthogonal component angle, and principle
component value.

Since this is a time-lapse experiment, the cells need to
be kept alive and minimally disturbed by the high intensity
light used in imaging. Therefore, experimental conditions
constrain imaging to phase contrast (less-damaging trans-
mitted light) and low SNR fluorescent imaging. Many re-
gions of interest exhibit SNRs of roughly 2. The goal of the
cell imaging is to classify stem cell colonies based on homo-
geneity and to analyze the homogeneity distribution of these
colonies through time. The classification of cell colonies is
based on the intensity and texture features extracted from
the fluorescent images. Therefore, it is important to com-
pute the features with the highest accuracy possible under
these circumstances. We apply the proposed methodology
on this problem to find the optimal image processing steps
that increase the accuracy of the measured features.

3.2. Pseudo-Real Image Creation

For this application the reference signal image dataset
consists of 100 stem cell colonies imaged in the fluorescent
channel with a long exposure time and high power exci-
tation light to create very high SNR images. All of these
colonies fit within a single FOV and are larger than 1000
pixels in area. It is important to note that in acquiring these
images with the aforementioned acquisition parameters, the
colonies were both damaged and photo-bleached, making
this acquisition method unsuitable for the target time-lapse
experiment.

Typical background noise for the target experiment is ac-
quired by imaging the specimen background consisting of
cell culture media, culture dish, and any extracellular ma-
trix protein coatings under the same acquisition parameters
as the real experiment. In addition to any background auto-
fluorescence, the CCD camera noise is captured in these
background images. We acquired 30 background images
with different spatial locations on the plate typical of the
conditions expected in the target time-lapse imaging exper-
iment.

Conditional random sampling is applied to the set of



100 reference signal colony images and 30 measured back-
ground noise images to produce the set of pseudo-real im-
ages. Each colony image is combined with 3 background
images. Each background image is selected 10 times for
a total of 300 combinations. The subsampling, as opposed
to a complete factorial design, is used to restrict computa-
tional requirements to a reasonable level. Next, each colony
image containing ideally pure signal is combined with its
selected backgrounds to create 5 target SNR levels (1, 2,
4, 8, and 16). The colony images were segmented using a
manually selected threshold (foreground is greater than 500
intensity units) to set the background of the image to 0. Be-
fore this adjustment the reference signal image background
(non-colony pixels) contained just dark current noise from
the CCD camera with intensity values of approximately 200
units. The colony foreground contains pixels of approxi-
mately 4000-8000 grayscale intensity units coming from a
14bit CCD camera with an output range of 0-16284 inten-
sity units.

3.3. Optimization of Image Processing Filters

For this application we are interested in selecting the spa-
tial image processing filter and kernel size for each feature
which produces the most accurate measurement of that fea-
ture. While this methodology enables the design and op-
timization of arbitrary image processing pipelines with re-
spect to feature measurement accuracy, we have limited the
complexity of the processing pipeline to a depth of one op-
eration and a small set of manually selected spatial image
filters (Average, Median, or Gaussian) [8, 9]. These fil-
ters were chosen because they are commonly used methods
of reducing image noise. Each filter is parameterized by a
kernel size of which six were tested (3x3, 5x5, 7x7, 9x9,
13x13, 17x17). In order to evaluate the image processing,
each feature was computed for each combination of filter
type and kernel size.

3.4. Numerical Results

Each filter and kernel size combination is applied to the
pseudo-real images and all 61 features are extracted from
the processed images. This enables the analysis of how
the feature values change as a function of the image filter,
kernel size, and image SNR. The target experiment of this
study has an expected image SNR of 2. The optimal filter
and kernel size can be selected for each feature by selecting
the filter and kernel which maximizes the correlation in Eq.
(1) between the processed and reference feature values.

Applying the filter selected for each feature increases the
average correlation from 0.601 to 0.919. Of the 61 features
evaluated, 77% are optimized with the Gaussian filter, 18%
with the Average filter, 3.3% with the Median filter, and
1.6% with No Filter. Kernel sizes 5x5 and 7x7 are the most
common at 20% and 61% respectively. The majority of the

features (57%) have the same optimal filter and kernel size,
7x7 Gaussian. Figure 4 shows a histogram of the feature
correlation values for no filter and the optimal filter per fea-
ture, highlighting the increase in correlation.

Figure 4. Histogram of the extracted feature correlation with
ground truth values for pseudo-real images with an SNR of 2. Av-
erage correlation (ρ) is listed in the legend.

The feature correlation (Figure 4) without filtering has
an average correlation of 0.601 and only a few features with
correlations above 0.8. Once filtering has been performed
the majority of the features have correlations with ground
truth above 0.8. There are two groups of features that do
not respond well to filtering. The first group contains just
the statistical moment feature Mode (ρ ≈ 0.4). The second
group contains all of the Haralick principle component an-
gle texture features. All optimal filter per feature correlation
values below 0.9 are principle component angle texture fea-
tures with the exception of Mode. Without these two groups
the optimal filter per feature average correlation is 0.942.

By averaging correlation across all features a single opti-
mal image processing filter, the 7x7 Gaussian, can be found
for this experiment. Doing this results in a slight loss in av-
erage accuracy compared to selecting the optimal filter for
each feature. Among the features whose per feature optimal
filter differs from 7x7 Gaussian there is a 1.95% loss in av-
erage correlation and a 10.04% increase in average feature
residual RMSE Eq. (2).

residualRMSE =

√∑N
i=1 (Proci −Refi)2

N
(2)

The correlation metric selects the filter which results in
the strongest linear relationship between the ground truth
feature values and the processed feature values. If exact
feature values are required a linear transformation can be
applied to the processed feature values. This is demon-
strated in Figure 5 where the best filter for the feature Tex-
ture.Average.ENTROPY at an SNR of 2, 5x5 Gaussian, re-
sults in a bias in the processed feature values. This bias is
corrected with a linear transformation (slope a = 1.143 and
intercept b = −1.115) reducing the residual RMSE from
0.545 to 0.135.



Figure 5. Feature Texture.Average.ENTROPY (SNR of 2) pro-
cessed with the 5x5 Gaussian filter. The original processed feature
values are shown in (a) with a bias residual RMSE of 0.545. The
linear transformation of the processed feature values is shown in
(b) with a lower residual RMSE value of 0.135.

To examine the relationships between the processed im-
age feature values and the ground truth feature values a se-
ries of exploratory plots were generated. The first, shown
in Figure 6, contains scatterplots of the processed feature
values plotted against the ground truth feature values. This
figure is organized into a two dimensional grid of scatter-
plots. Within each plot the feature value for an individual
image is shown as a single point and the line marks y = x,
where the processed value equals the reference value. The
text superimposed on each scatterplot is the corresponding
correlation coefficient, see Eq. (1).

With no filter applied (indicated by the 1x1 kernel size)
there is a clear bias in the computed features that decreases
with processing. As the kernel size increases the correla-
tion values increase and the feature values show a reduc-
tion in bias. The effects of different image filter types is
most evident in the 3x3 kernel size plots. Of the 3x3 filters,
the Average filter has th least bias and highest correlation.
Moving across the row of 3x3 kernel size scatterplots, the
correlation decreases and the distribution gets further from
the y = x line. Increasing the kernel size reduces the dis-
parity in results between filter types. The optimal filter for
this feature is Gaussian with kernel size 5x5.

Due to the high dimensionality of the feature accuracy
data it is hard to conceptualize the full picture. Therefore, a
summary plot was created where the correlation values pre-
viously printed on the scatterplot are plotted as a function
of image feature, filter type, kernel size, and image SNR.
This plot is shown in Figure 7 and can be found in sup-
plementary document 1. Each image SNR block contains
4 sub-blocks, the Gaussian filter block ’Gau’, the Median
filter block ’Med’, the Average filter block ’Ave’, and the
No filter block ’None’. Within each filter block, the ker-
nel size increases from bottom to top, 3 to 17. Per column
within each SNR block the maximum correlation value is
shown by printing the relevant kernel size. Figure 7 shows
that there is considerable variability in the optimal filter and
kernel size between different features. Overall, as the image
SNR increases the optimal kernel sizes shrink.

Figure 6. Feature value scatterplots for the feature Tex-
ture.Average.Entropy at an SNR of 2 given the different filter types
and kernel sizes. This figure is organized into a two dimensional
grid of plots. Within each plot the feature value for an individual
image is shown as a single point. The line marks y = x, where
the processed feature value equals the reference feature value. The
superimposed text on each scatterplot is the correlation coefficient
(ρ) for that scatterplot.

Reducing the dimensionality of the data once more is
done by averaging correlation values across all features to
produce a single value per filter type, image SNR, and ker-
nel size. This creates plots where feature correlation is
shown as a function of kernel size for each image SNR and
filter type. Figure 8 depicts plots of these feature correla-
tions processed with Average, Median, and Gaussian filters,
where each point shows correlation averaged across all 61
features.

4. Discussion

There are several general observations that can be
gleaned from Figure 8. First, a dominant factor in deter-
mining the processed feature measurement accuracy is the
image SNR. The higher the acquired image SNR the more
accurate the feature measurement which is logical since
higher SNRs have less noise to distort the feature measure-



Figure 7. Correlation summary plot. Each image SNR block contains 4 sub-blocks, the Gaussian filter block ’Gau’, the Median filter block
’Med’, the Average filter block ’Ave’, and the No filter block ’None’. Within each filter block, the kernel size increases from bottom to
top, 3 to 17. Per column within each SNR block the maximum correlation value is shown by printing the relevant kernel size.

ments. If the image SNR is high enough there is little to no
accuracy gained by filtering the images. For example, at an
SNR of 16 a 3x3 kernel provides a minor increase in feature
measurement accuracy, but a 5x5 kernel provides equal or
worse accuracy than no filter. Second, as the image SNR
decreases, larger filter kernels are required to obtain a given
level of feature measurement accuracy. For example, at an
SNR of 4 a 3x3 Gaussian kernel produces roughly the same
accuracy as a 5x5 Gaussian kernel at an SNR of 2. Third,
Gaussian filters require a larger kernel size to accomplish
the same effect as the Median or Average filters.

The time-lapse stem cell colony imaging experiment pre-
sented here has an SNR of approximately 2. Given that
constraint, the optimal image filter and kernel size for each
feature should be selected such that the correlation between
the processed feature values and ground truth feature values
is maximized. The per feature filter selection accuracy data
is available in supplementary document 2 for each image
SNR level. Looking at just the filter type selection for an
SNR of 2, 77% are optimized with the Gaussian filter, 18%
with the Average filter, 3.3% with the Median filter, and
1.6% with No Filter. The optimal kernel size distribution is



Figure 8. Average feature correlation values for each Filter, SNR, and Kernel size combination. The first plot was processed with an
Average filter, the second a Median filter, and the third a Gaussian filter. Within each plot correlation is shown as a function of kernel size
for multiple SNR values.

more spread out with 60.65% being 7x7, 19.67% 5x5, 8.2%
3x3, 6.56% 9x9, 3.23% 13x13, 1.64% No Filter, and 0.0%
17x17. The most common filter and kernel size combina-
tion is 7x7 Gaussian which is optimal for the majority of
the features (57%). This effect shows up in Figure 7 as a
fairly consistent row of ’7’s written within the ’Gau’ block
of ’SNR=2’.

Texture features which compute a principle component
directionality angle did not improve nearly as much as the
other evaluated features. These features accounted for all
but 1 of the features that did not obtain a correlation of 0.9
or greater under any considered filter. This shows up in Fig-
ure 7 as a vertical block of lower correlation values across
all SNRs.

Whether one selects a single image processing filter for
the entire experiment or a filter per feature, these results
are only relevant for the target experiment under consider-
ation. The numerical results cannot be generalized but the
methodology can. Changes in the target experiment (dif-
ferent cell line, different features, etc.) would require this
pre-experiment to be redone in order to find the optimal fil-
ter(s) and kernel size(s) for the new target experiment. The
power of this approach is its flexibility and extensibility.
This optimization methodology can be applied to different
experiments, image conditions, image modalities, and im-
age features. For small scale experiments it might not be
reasonable to perform such a pre-experiment to help design
the target experiment and its data processing. However, as
long as the pre-experiment does not constitute an unreason-
able effort, it can help inform the accuracy of the target ex-
periment.

5. Conclusions

This work was motivated by a desire to understand the
impact on stem cell colony classification when using im-
age features derived from low SNR images. We devised a
methodology to quantify the improvement of feature mea-

surement for a given image pre-processing method. As a
proof of concept, we chose three basic filtering techniques
as pre-processing steps. We found that selecting the best
filter per feature produces a 53% improvement in feature
correlation with ground truth, from 0.6 to 0.92. Selecting a
single filter for all features results in a 1.95% reduction in
correlation and a 10% increase in residual RMSE.

6. Future Work

We intend to measure the impact of using image features
derived from pre-processed images on colony classification
accuracy. The pool of image processing operations is going
to be expanded to include more advanced image enhance-
ment and noise reduction algorithms.
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