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Summary

Several computational challenges associated with large-scale
background image correction of terabyte-sized fluorescent im-
ages are discussed and analysed in this paper. Dark current,
flat-field and background correction models are applied over
a mosaic of hundreds of spatially overlapping fields of view
(FOVs) taken over the course of several days, during which
the background diminishes as cell colonies grow. The motiva-
tion of our work comes from the need to quantify the dynamics
of OCT-4 gene expression via a fluorescent reporter in human
stem cell colonies. Our approach to background correction is
formulated as an optimization problem over two image par-
titioning schemes and four analytical correction models. The
optimization objective function is evaluated in terms of (1) the
minimum root mean square (RMS) error remaining after im-
age correction, (2) the maximum signal-to-noise ratio (SNR)
reached after downsampling and (3) the minimum execution
time. Based on the analyses with measured dark current noise
and flat-field images, the most optimal GFP background cor-
rection is obtained by using a data partition based on forming a
set of submosaicimages with a polynomial surface background
model. The resulting image after correction is characterized by
an RMS of about 8, and an SNR value of a 4 x 4 downsam-
pling above 5 by Rose criterion. The new technique generates
an image with half RMS value and double SNR value when
compared to an approach that assumes constant background
throughout the mosaic. We show that the background noise
in terabyte-sized fluorescent image mosaics can be corrected
computationally with the optimized triplet (data partition,
model, SNR driven downsampling) such that the total RMS
value from background noise does not exceed the magnitude of
the measured dark current noise. In this case, the dark current
noise serves as a benchmark for the lowest noise level that an
imaging system can achieve. In comparison to previous work,
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the past fluorescent image background correction methods
have been designed for single FOV and have not been applied
to terabyte-sized images with large mosaic FOVs, low SNR and
diminishing access to background information over time as
cell colonies span entirely multiple FOVs. The code is available
as open-source from the following link https://isg.nist.gov/.

Background

Pluripotent stem cells have great potential as a source of cells
for regenerative therapies. However, many aspects of control-
ling pluripotent stem cells behaviour are still not well under-
stood (Saha & Jaenisch, 2009). The motivation of our work
comes from the need to quantify the dynamics of OCT-4 gene
expression in human stem cell colonies, because OCT-4 is a
critical gene in the regulation of pluripotency, or the abil-
ity of stem cells to differentiate into all somatic cell types
(VanDenBerg et al., 2010). OCT-4 gene expression in cells is
reported by a green fluorescent protein (GFP) reporter inserted
in the regulatory region ofthe OCT-4 gene (Zwaka & Thomson,
2003). Specifically, we are interested in understanding how
colony-level GFP intensity is related to population-level cell
behaviour, how normal regulation of stem cell gene expres-
sion occurs, and how to develop and assess human pluripotent
stem cells culture quality parameters.

Time-lapse epifluorescence microscopy using fluorescent
protein reporters provides an opportunity for imaging and
analysing the dynamics of gene expression and morpholog-
ical changes in live human pluripotent stem cells cultures.
Imaging at high spatial and temporal resolutions generates
terabyte-sized image sets spanning hundreds of FOVs through
time (Fig. 1). There are several technical challenges to over-
come before quantitative biological information can be ob-
tained from these big data sets. Images of live cells, such as
pluripotent stem cells, must be acquired with low-power illu-
mination to minimize biological artefacts from light-induced
damage to cells. Light intensity was empirically set at the low-
estvalue, at which we could still discern image features in each

Published 2014. This article is a U.S. Government work and is in the public domain in the USA



BACKGROUND INTENSITY CORRECTION 227

Fig. 1. Uncorrected and flat-field corrected example image: Uncorrected mosaic of green fluorescent protein (GFP) image channel that was stitched from
22 x 18 FOVs acquired on the fourth day of a stem cell colony imaging experiment (left). The image on the right is corrected for uneven illumination and
dark current but not corrected for background. The five numbered red ‘x’ mark FOVs with nothing but background pixels in them.
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Fig. 2. Normalized histogram of foreground and background intensities: Foreground and background normalized histograms of one image with 500
bins. The two curves illustrate low SNR = 1.4 in the (1 x 1) binned GFP image.

respective colour channel and could perform image analy-
sis. The acquisition requirement of minimally perturbing cells
leads to a low signal-to-noise ratio (SNR) of the fluorescent
signal (Fig. 2) and its sensitivity to correcting for dark current,
flat-field and background media sources of noise. We address
the overall problem of fluorescent image correction with the
focus on background correction in order to minimize the re-

maining errors in the corrected background and maximize the
SNR.

Thebackground correction poses challenges due to the com-
plex interactions of cells, media, fluorescent biomarker and
imaging light, and also due to the computational demands of
processing images spanning very large fields of view of grow-
ing cell colonies. In general, the foreground intensity signal
over cell colony image regions includes not only contributions
from cells but also non-specific autofluorescence from the cell
culture media, culture dish and any extracellular matrix pro-
tein coatings (Fig. 3). The fluorescent components may vary
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Fig. 3. Spatiotemporal graphs of average intensity per FOV: These results are displayed for the five numbered locations shown in Figure 1 through 5 days

of acquisition. A frame is acquired every 45 min and a daily media change for the culture is performed every 24 h from the beginning of the experiment.

The curves illustrate global intensity variations across an entire image mosaic and over time.

spatially and temporally because of spatial distribution of fluo-
rescent molecules, different amounts of light interacting with
these molecules, and photo-bleaching of molecules over time.
It is impossible to capture these spatiotemporal variations of
fluorescent signal in the background from a single FOV since
stem cell colonies grow to cover very large spatial areas. Fur-
thermore, the background correction is complicated by the fact
thatindividual colonies can completely occupy areas spanning
several FOVs, creating FOVs without any background pixels
(Fig. 1). Unlike single cell imaging where background areas
around cells provide accurate estimates of background inten-
sity, pluripotent stem cells grow as colonies of cells (islands)
that merge with neighbouring colonies over time as the culture
progresses, and background areas in a colony culture become
sparse at later times. In summary, background correction from
live stem cell colony microscopy experiments has to overcome
estimation challenges including: (1) finding accurate spatial
and temporal models, (2) deriving parameters of the models
from a diminishing number of background pixels over time as
colonies grow, (3) maximizing SNR due to low-light illumina-
tion and (4) scaling computations of background models over
a very large mosaic of small FOVs, and hence millions of pixel
values per time frame.

The problem of correcting single FOV images has been ap-
proached by imaging reference materials (Model & Burkhardt,
2001), designing data-driven models of optical and digi-
tal artefacts without recorded images of reference materi-
als (Leong, 2003), or combining both recorded images of
reference materials and data-driven models (Piccinini et al.,
2013). The past work spans commercial panoramic cameras
(Goldman, 2010), microscope cameras (Waters & Swedlow,
2007; Wu et al., 2008), and various custom cameras (Kim

& Pollefeys, 2008; Galego, 2011). Many techniques for esti-
mating vignetting (radial fall-off), exposure and white balance
variations, and sample radiances are common across multi-
ple camera types including the microscope cameras with spe-
cific challenges summarized by Waters & Swedlow (2007).
Some background correction models are approximated by
the mean grey level of the areas between cells (Model &
Burkhardt, 2001). A more accurate background subtraction
can be achieved by extracting average grey level from prede-
fined surrounding pixels of a cell or a colony (Chalfoun et al.,
2013). This cell/colony specific background value compen-
sates for spatial variations better than a single mean grey level
especially for data sets with large FOVs and acquired over a
significant duration of time.

None of the previous work deals with background mea-
surement or modelling over large image mosaics and in the
presence of cells/colonies that cover multiple FOVs. The back-
ground is usually considered constant or is neglected. In more
advanced treatment, background is approximated by averag-
ing closest background pixels to the cell areas or estimated by a
fitting function on the entire FOV pixels. These approaches do
not work well on large spatial mosaics due to computational
complexity (execution time and machine memory usage) and
the need to model the background across large numbers of
FOVs.

Our approach to background correction is formulated as an
optimization problem over two data partitioning schemes (full
mosaic and submosaic based) and their corresponding cor-
rection models represented by four analytical functions. The
four functions include polynomial surface, cubic spline in-
terpolation, linear interpolation and nearest neighbour. The
optimization objective function is evaluated in terms of (1) the
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minimum RMS error remaining after correction, (2) the maxi-
mum SNR reached after downsampling and (3) the minimum
execution time and low memory usage. In terms of SNR max-
imization, a successful background correction produces an
image where the background follows a standard white noise
reduction by a factor of n when the image is binned by n x n.
The method that has the maximum SNR after downsampling
with the same binning factor of n x n will be better suited for
this type of correction.

Based on the analyses with measured dark current noise
and flat-field images, we show that the most optimal GFP back-
ground correction is obtained by using the submosaic-based
data partition and a polynomial surface background model.
It is critical in low-SNR images that the remaining error after
GFP correction is minimized in order to derive GFP signal-
based biological insights with high statistical confidence. We
show that the background noise contributing to the total RMS
value can be corrected computationally with the developed
method down to the magnitude of the measured dark cur-
rent noise. In this case, the dark current noise serves as a
benchmark for the lowest noise level that an imaging system
can achieve. In comparison to previous work, the past GFP
correction methods have been designed for a single FOV and
have not been applied to terabyte-sized images with low SNR,
colonies spanning multiple FOVs and missing background in-
formation. Thus, the novelty of our work is in the design of
background correction of large-sized GFP images such that
the amount of remaining errors after correction is minimized
and the SNR is maximized whereas the spatial resolution is
minimally sacrificed.

This paper describes a search for an optimal back-
ground correction triplet (data partition, model, SNR driven
downsampling) over terabyte-sized fluorescent image mo-
saics such that the noise from background after correction
does not exceed the magnitude of measured dark current
noise.

The outline of the paper is as follows. Section 2 presents all
the steps for GFP image correction including the data partition-
ing schemes and the surface fit functions used to perform the
background correction. Section 3 documents all evaluation
results to find the optimal data partitioning and fit function
with low SNR in the image. Sections 4 and 5 summarize and
discuss our results.

Methods

We proceed under the assumption that the GFP foreground
and background masks are available over all time frames. In
our work, these masks were created from phase contrast mi-
croscopy images by thresholding gradient images obtained via
Sobel operator and postprocessed using morphological oper-
ations that include deleting objects smaller than 5000 pixels.
The threshold value is selected by using an empirical gradient
threshold (EGT) technique as documented in (Chalfoun et al.,
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2014). Two experts performed manual segmentation on 16
images with a frequency of 1 image every 10 frames to cover
the entire time-sequence. The comparison between manual
and automated segmentations was measured using the Dice
metric (Dice, 1945). An average value of 0.9944 + 0.0043
for Dice is obtained between manual and automated segmen-
tation of the phase contrast images with a clear separation
between foreground (colonies) and background. Results of a
typical segmentation from this automated process are shown
in Figure 4. Both phase contrast and GFP images are registered
by virtue of the microscope design.

Image acquisition

Our dataset includes three experimental replicates following
the growth in culture of the H9 human embryonic stem cell
line over 5 days on a microscope stage equipped with a con-
trolled environment incubation chamber (Kairos Instruments
LLC, Pittsburgh, PA, USA). The stem cell line was engineered
to stably produce green fluorescent protein (GFP) under the
influence of the native OCT-4 promoter, using a published ho-
mologous recombination plasmid construct developed by the
James Thomson lab (Zwaka & Thomson, 2003), and obtained
from Addgene (Addgene, Cambridge, MA, USA).

Cells were cultured in phenol red-free DMEM/F12 supple-
mented with sodium selenium (14 ng mL~1'), insulin (19.4
pugmL™!), sodium bicarbonate (543 pugmL™'), transferrin
(10.7 pwgmL™!) (all from Life Technologies, Carlsbad, CA,
USA), L-ascorbic acid-2-phosphate magnesium (64 pugmL™';
Sigma-Aldrich, St. Louis, MO, USA), basic fibroblast growth
factor (100 ng/mL), and transforming growth factor-g1 (2
ng mL~!) (both from R&D systems, Minneapolis, MN, USA)
(Chenetal., 2011).

Imaging was done on a Zeiss 200M microscope using a Zeiss
10x EX Plan-NeoFluar ph1l 0.3NA objective (Carl Zeiss Mi-
croscopy, LLC, Thornwood, NY, USA) both in phase contrast
and epifluorescence modes, with mosaics acquired every 45
min. Images were captured on a Coolsnap fx camera (Pho-
tometrics, Tucson, AZ, USA) with 12-bit digitization and no
binning. Phase contrast images were captured using a 150 ms
exposure with a 100 W tungsten—halogen light source set at
2.3 V. Green fluorescence images were captured using a 500
ms exposure with a 250 mW blue LED light source with a 470
nm nominal wavelength (Thorlabs, Newton, NJ, USA) set at
50% intensity, filtered through a standard GFP filter cube set
(Chroma, Rockingham, VT, USA). Focus was set for all the
frames in the mosaic after daily cell feeding using the mosaic
plug-in for Axiovision image acquisition software (Zeiss)

An 18 x 22 mosaic of 396 contiguous FOVs with a 10%
overlap is acquired, covering an area of approximately 180
mm?. The acquired (x, y, t) data sets over three replicas con-
sist of 529 336 files, and about 1.427 TB of data. Each FOV
consisted of (1040 x 1392) pixels and each time point con-
tained an area of (18 x 22) FOVs, all FOVs stitched into a
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Fig. 4. Segmentation example: Phase contrast image example (left). Corresponding segmented image overlaid on top of the phase image (right).

single time point mosaic consisting of approximately (20 000
x 20 000) pixels. Flat-field images for the GFP channel were
collected using a fluorescent solution sandwiched between a
glass slide and a coverslip, as previously described (Model &
Burkhardt, 2001).

Flat-field and dark current correction

In our work, we are interested primarily in fluorescent micro-
scope image correction models that compensate for thermal
noise (dark current models), uneven illumination (vignetting
functions) and stem cell media interaction (background cor-
rection methods). The dark current and vignetting functions
are modelled using recorded single FOV images. We follow a
standard calibration procedure described in Eq. (1) that utilizes
recorded dark current images acquired with a closed camera
shutter and fluorescein images obtained by imaging a refer-
ence fluorescent solution (Model & Burkhardt, 2001). In this
study, we are not concerned with photo-bleaching, autofluo-
rescence, CCD readout and quantization noise since they rep-
resent standalone problems (Wu et al., 2008). The calibration
is represented by Eq. (1).

I-B-D I1-D
F—-D ~ F-D

GFPsignal = Bfa (1)

where I is the intensity of an acquired image, D is the dark
image, F is the fluorescein image and B is the background
image, the offset information present in I. Note that, By is the
background image after flat-field correction. Through the rest
of the paper all estimation models and analysis are done to
measure Bj.

Optimization framework for background correction

Evaluation of background correction error.  For the purpose of
evaluating estimated background, we established a set of back-
ground reference pixels (BRP) through the following process,
which is displayed in Figure 5: The BRP of any given image are
the set of pixel locations that belong to the background (BK G )
of that image and the foreground (F RG ) of the latest image in
the given time-sequence dataset (BRP = F RG juest N° KG).
These are the pixels of known background values but consid-
ered as unknown when performing the background correc-
tion. When fitting the model we use pixels that are contained
in the background BK G but not in the BRP. That is, the set
BKG N® RP¢ is used for training and the set BRP is used for
testing.

Figure 5 shows segmentation of an early time point (t = 50
x 45 min = 37.5 h from the first acquisition on the left). The
middle mask shows the background pixels that were consid-
ered for model fitting. The third mask shows the background
pixels from the latest time point (t = 161 x 45 min = 120.75
h from the first acquisition) that were omitted from the fit
and used to compute the remaining error in the background
correction.

When applying background correction techniques to the
flat-field and dark current corrected GFP images, different re-
sults of corrected images are obtained. In order to evaluate
multiple background correction techniques, we define an op-
timization objective function in Eq. (2) with the search space
samples. We search for an optimal data partitioning scheme
and background correction model that achieve (1) the mini-
mum R MS of the difference between the modelled background
intensities and the observed intensities over the BRP (Fig. 5),
(2) maximum SNR and (3) minimum execution time (Texec).
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Fig. 5. Threeregions of interest: Three regions of interest: Segmented image with all available background pixels labelled as white (left). Segmented image
with background pixels used for the fit modelling in white (middle). Segmented image where background reference pixels (BRP) in white were used for

evaluating the remaining error as RMS value.

After successful background correction the image SNR is in-
creased by downsampling (replacing a group of neighbouring
pixels by their average value). The method that has the maxi-
mum SNR after downsampling with the same binning factor of
n x nwillbe better suited for this type of correction. Each term of
the optimization objective function in Eq. (2) is given a weight
determined by its importance. In our experiments, the weights
followed the ratio wruys : WsNR : Wrexee = 3 & 2 : 1. The val-
ues of RMS, SNR and Texec were normalized with respect to
maximum RMS value, maximum SNR value, and maximum
execution time per time point. All of the terms in the following
equations will be described in the following subsections.
Optimization function:

{DataPartition, Model}* =

arg mln{DataPartition,Model} (wRMS * RMS

4 wsnr * (1 —SNR)+ Wreyee * Texec) . (2)

Search space:

DataPartition = {full mosaic, submosaic} .

Model = {polynomial surface, cubicinterpolation, linear
interpolation, nearest neighbor} .

SNR and the RMS error of a given image are computed
according to the equations below:

1 . A
SNR = Z (I — BH)/Std({I” - B"}neBKG) » 3)
FRG cFRG
RMS = | > (- B 4)
Ngrp

ne BRP

where in Egs. (3) and (4), Nrrg and Ngrp denote the number
of foreground pixels and BRP, respectively, n is an index for
pixel location in the image, I, is the observed intensity of pixel
n, B, is the modelled background intensity of pixel n, F RG is
the set of pixel locations that are identified as foreground and
BK G isthe complement of F RG and contains the set of pixels
identified as background, BRP is a subset of BKG used for
background model assessment.

Data partitioning schemes and surface fit functions. ~ We have
considered two image partitioning schemes, the full mosaic
and submosaic-based partitions. Figures 6 and 7 illustrate
both data partitioning schemes. Submosaic images in Figure 7
are created by extracting the average value of a sub tile (an
example of a subtile is the red square in the upper left corner
of a FOV) from each FOV at a fixed location and placing it into
a constructed submosaic image according to the FOV index in
the grid of FOVs per time frame. Each FOV has a dimension of
(1040 x 1392). For a subtile size of 16 x 16 pixels, each FOV
will be tiled into 65 x 87 = 5655 subtiles. Each subtile at a
particular location will be replaced by the average value over
16 x 16 pixels. These values from the same location across
all FOVs (the red for example) will be assembled together to
form one submosaic. Each submosaic will have a size of (18
x 22) pixels. The total number of submosaics formed is 5655.
The surface fit will be applied on each mosaic independently.
Figure 8 shows the submosaic images formed from the (18 x
22) grid of FOVs. The black pixels indicate that they belong
to the foreground and hence are not available for background
modelling. The idea behind the submosaic creation is that
background intensities are continuous throughout the entire
plate and across FOV boundaries. The submosaic image is a
good approximated map of the background throughout the
entire mosaic representing a particular FOV location.

For the optimization study, we used four surface fit-
ting functions for correcting terabyte-sized GFP images
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Fig. 7. Image partitioning scheme 2: Average values of the red pixels from the same location of all FOV are assembled into the red submosaic. The same
procedure is performed on the pixels at the following location (the green one) etc. until all locations on the FOV have been assembled into submosaics.
Background estimation by surface fitting is performed to the constructed submosaics. There are m = 18 times n = 22 equal to 396 FOVs used for
background estimation. The red and green colours denote the original location of the pixels in each FOV and their new locations in a submosaic images.

Table 1. Surface fit functions.

Fit Type

Description

Polynomial surface

Cubic interpolating spline
Linear interpolation
Nearest neighbour

Z=poo + p10™x +po1*y + . .. + p12*¥*y? + pos*y’

This method fits a different cubic polynomial between sets of three points for surfaces.
This method fits a different linear polynomial between sets of three points for surfaces.
This method sets the value of an interpolated point to the value of the nearest data point.

as described in Table 1. The methods come directly from
the Matlab library (with online documentation found in:
http://www.mathworks.com/help/curvefit/fit. html) and are
described in detail in Rovenskii (2010).

Results

First, we discuss the results of the best technique for GFP back-
ground correction found from our optimization scheme. Then,
we compute the best image mosaic downsampling to get the
SNR to a minimum value of 5 per Rose criterion (Watts et al.,

2000) across all time points and replicas, which gives a good
SNR whereas minimal spatial resolution is sacrificed

Optimization results

We report optimization results performed on 15 time points in
Figure 9 below. The time-points are selected by increment of
10 frames. The execution time of the model fit is measured in
seconds and it is the time needed to perform the background
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Fig. 8. Resulting submosaic images over time: The decreasing number of background pixels is due to the growth of stem cell colonies. The submosaic

images on the left are at the early time points and on the right at the later time points of the experiment. Nonblack pixelsin 18 x 22 submosaic images are

at those FOV locations that contain only background pixels within a FOV. The black pixels in 18 x 22 submosaic images represent the average intensity

value of the foreground pixels in that particular FOV.
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Fig. 9. Results between image partitioning schemes: This figure displays the results for image partitioning approaches for 15 time-slices (one slice is

taken every 10 frames). The four illustrations above represent the quality metrics for the eight partitioning-model combinations (two image partitioning

schemes and four background interpolation models performed on 4 x 4 downsampled GFP images to meet the SNR constraint). The ‘score’ quality metric
is computed according to Eq. (2) with the RMS, BRP, SNR and Texec normalized by the maximum values over both approaches.

estimation on a mosaic image at one time point. The overall
execution time including reading image tiles, model fit, back-
ground correction and mosaic assembly takes about 15 min
per time point. The optimization code was written in Matlab®
[version 8.0.0.783 (R2012b)] with the additional packages
‘image processing toolbox 8.1’ and ‘statistics toolbox 8.1’. The

code was executed on a desktop machine with Intel® Xeon®
CPU E5-2620 0 @ 2.00GHz, 64.0 GB RAM, and Windows 7
Enterprise (64 bit) operating system.

The results displayed in Figure 9 indicate that for each of
the four considered surface fit functions (see Table 1), the
approach based on fitting submosaic images achieves smaller

Published 2014. This article is a U.S. Government work and is in the public domain in the USA, 257, 226-237



234 J. CHALFOUN ET AL.

scores, smaller RMS BRP and at least twice larger SNR than
the approach based on full mosaic images. Figure 9 also shows
that the polynomial surface background model is better than
the rest of the fitted models in either data partitioning scheme.
One can observe that the differences between the fitted models
are much smaller within the submosaic data partitioning
approach than within the full mosaic approach. Even though
the images do not appear the same visually, the optimization
entries (RMS level of noise, SNR after downsampling and
execution time) are very similar. Overall, using the submosaic-
based data partition and a polynomial surface background
model produced the best GFP background correction, accord-
ing to our optimization score. We will use this technique to
correct the GFP background for all time points and replicas.

To highlight the effectiveness of this new approach, we ar-
bitrarily selected frame 50 and corrected it by assuming that
the background is constant through the entire mosaic. Hence,
one background image (location 4 in Fig. 1) is taken as the
background for all tiles in the mosaic. The resulting image
gave a SNR value of 3.150 and an RMS value of 15.33. This
illustrates that a traditional approach is not a good solution
to solve the background correction problem in a large mosaic
dataset.

Spatial downsampling and signal-to-noise ratio constraint

Due to the low SNR present in the dataset for all time points, we
minimize the spatial downsampling ratio (maximizing spatial
image resolution) while satisfying the Rose detectability cri-
terion (Watts et al., 2000) for the SNR over all image time
frames and downsampling ratios according to Eq. (5) and for
all replicas. The Rose criterion of SNR > 5 is met for the kernel
sizes of (4 x 4) and higher across all temporal frames and repli-
cas (Fig. 10A). Figure 10(B) shows the normalized histograms
of the background and foreground signals for the same image
and time point as the one displayed in Figure 2. This highlights
the contrast between the (1 x 1) downsampling with low SNR
and the (4 x 4) downsampling with higher SNR.

DownsampllngRatlo = IMINSNR(DownsamplingRatio, data(x, time))>5

Downsampling Ratio, (5)

DownsamplingRatio = {2 x 2,4 x 4,6 x 6,8 x 8,10 x 10,
12 x 12,14 x 14,16 x 16}.

Figure 11 shows examples of the results of three time point
mosaics corrected using submosaic and the polynomial fit and
binned at (4 x 4).

Sensitivity analysis

In order to analyse the background correction performance
for increasing colony coverage, we compared results at time

points with small and large colony coverages. First, we
selected an image taken at an early time point (frame number
20) where colonies are still very small and their coverage is
only 3.22% of the image. SNR values are always computed at
the time point 20. Next, we took segmented images from time
points 40 until the end of the experiment with an increment of
20 frames. The purpose is to compute the measures such as the
RMS of the BRP pixels, the SNR at 1 x 1 computed on top of the
colonies at time point 20, and the SNR at 4 x 4 after the image
is binned. We computed these values after each correction as
a function of the percent colony (foreground) coverage. The
colonies in the last time point (frame 160) covered only 58%
of the plate. We had to dilate the segmented mask of that last
point in order to cover 70%, 80% and even 90% of the plate.

Figure 12 shows the results of the background correction
performance for increasing colony coverage. As colonies grow
and cover more background, the accuracy of estimating the
colony signal computed at time point 20 drops significantly
even after doubling the colony area from 3.2% to 7%. This
increase in colony coverage translates to a significant drop of
the SNR. The SNR drop reflects an increased uncertainty of the
estimated colony signal at later time points. The uncertainty
increases radially in each colony towards the colony centre
as the values are farther from the known background pixels.
Nevertheless, the RMS value is almost unchanged with an
increased colony coverage which indicates a constant noise
level in the image.

Discussion

We discuss an additional evaluation aspect of background cor-
rection with respect to measured dark current noise. We view
the measured dark current noise as the lowest possible noise
level in our measurement system and compare the remaining
noise after background correction to the dark current noise.
The dark image subtracted from the fluorescein and the cur-
rentimage I inEq. (1) isamedianimage computed overall 396
dark images that are acquired with closed shutters. However
when an image is being acquired it has its own corresponding
dark, background and signal information. Thus, Eq. (1) can
be written as
I-D (S+B+D;)—-D
F-D F-D '
Assuming no signal or background: S = 0 and B = 0, then
Eq. (6) becomes

(6)

I-D D;—D

F-D F-D’

The RMS value computed on the image by Eq. (7) is the
lowest white noise level in our system. Figure 13 shows
the RMS value computed over 100 dark images following
Eq. (7). The fluctuation of the dark noise is approximately
5.07 whereas the total RMS value for the GFP correction in-
cluding the dark, fluorescein, and background correction is on

(7)
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Fig. 10. Downsampling and SNR plot: (A) SNR computed over all 161 temporal frames of replica 1 and spatial downsampling kernels between 2 x 2
and 16 x 16. The Rose criterion of SNR > 5 is met for the kernel sizes of 4 x4 and higher across all frames. (B) Foreground and background normalized
histograms of one binned image (4 x 4) with 500 bins. The two curves illustrate a SNR = 6.1 in contrast with the SNR = 1.4 in the (1 x 1) binned image.

Fig. 11. Examples of corrected GFP images: Corrected images for frames 50, 100 and 150 from left to right. These images are spatially downsampled by
(4 x 4), flat-field correction, dark current correction and background subtraction.
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Fig. 12. Sensitivity analysis to the foreground percentile coverage: Image frame 20 is considered for this sensitivity analysis where colonies are still very
small and cover only 3.22% of the image. SNR values are computed at the image frame 20. RMS values are computed over known background pixels
that are considered unknown by taking segmented images from image frame 40 until the end of the experiment with an increment of 20 frames. The
colonies at the end of the experiment cover 58%, morphological dilation is done to get the colony coverage to 90%.
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Fig. 13. Dark images error: RMS error obtained over 100 single FOV images with only background pixels.

the order of 8.9. That gives a maximum error contribution of
e =9.53 —5.07 = 3.83 as total error from fluorescein and
background correction. This error is less than the dark noise
error contribution which demonstrates experimentally that
the background noise contributing to the total RMS value can
be corrected computationally with the developed method to a
magnitude less than the measured dark current noise.

Conclusions

We demonstrated a computational technique for background
correction of terabyte-sized fluorescent microscopy images.
The solution was obtained by optimizing over a space of two
image partitioning schemes and four background correction
models. The optimization cost function included RMS, SNR
and execution time. We concluded that the optimal solution
framework contribution from background noise to the total
RMS value does not exceed the measured dark current noise.
The new technique generated a corrected image with half of
the error value and twice of the SNR value when compared to
an approach that assumes constant background throughout
the mosaic. We made the code is available as open-source from
the following link https://isg.nist.gov/.

In the future, we plan to develop a temporal model of colony
background which would include photo-bleaching effects,
movement of the media, illumination variation, and other

variables in order to minimize the uncertainty of estimated
colony pixels, especially for those time points with large colony
coverage.
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