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Calibrating multiple
microscopes with a smartphone

Peter Bajcsy, Jacob Siegel, and Mary Brady

A smartphone high-resolution LCD allows efficient and accurate cali-
bration of an inexpensive array of handheld microscopes for measuring
microscopic dynamic events over a large field of view.

How does one build an inexpensive array of handheld micro-
scopes for measuring microscopic dynamic events over a large
field of view (FOV)? The challenges of building such an instru-
ment lie in estimating spatial, temporal, and color properties
of each handheld microscope, as well as in integrating individ-
ual fields of views into a large FOV seamlessly. These calibra-
tion challenges of building inexpensive arrays of cameras have
been encountered and researched in close-range photogramme-
try and multi-camera computer vision applications.! Previ-
ous research has aimed to reconstruct 3D scenes, but our ulti-
mate objective is to image live cells in a culture dish. An en-
tire dish 10cm in diameter cannot be imaged at the rate of
cell state dynamics with a combination of a single camera mi-
croscope and a motorized stage. In our experience, acquisition
of about 17% of the dish takes around 22 minutes by a Zeiss
motorized stage (18 x 22 tiles with 10% overlap).

To explore the above calibration challenges with arrays of
microscopes, we first assembled a linear array of two digital
handheld microscopes (Dino X Lite AM-413MTS5, 12 frames per
second, 1280 x 1024 image pixel dimensions), and then con-
nected them to a computer via USB. These microscopes are
currently used primarily for skin and scalp dermatology and
printed circuit board inspection. Although the macro-scale cal-
ibration methodologies can be applied at a micro-scale, the mi-
croscopic resolution imposes much higher quality specifications
and therefore much higher costs. As a result, the same calibration
objects cannot be used. We assessed smartphone high-resolution
displays (e.g., iPhone 4S, retina display, 0.079mm/pixel) as alter-
native calibration objects by comparing them to traditional cali-
bration objects (i.e., Gretag Macbeth color chart, a stage microm-
eter for pixel-to-millimeter conversion, and a set of prior known
shapes with their locations for pose estimation): see Figure([l]

Figure 1. Traditional objects used for (top left) color, (top right) spatial,
and (bottom left) pose calibrations. (Bottom right) These objects are
replaced by an iPhone LCD rendering a virtual object.

Figure 2. A microscopic image of a green square in the Gretag Macbeth

color chart printed by a color printer (left). A microscopic image of an
iPhone LCD screen rendering a green color (right). The LCD display is
rendering a set of temporally changing distinct colors from the Gretag
Macbeth chart.

Next, we developed calibration methods to perform pixel-to-
millimeter conversion, red-green-blue color normalization, and
microscope pose estimation using the high-resolution LCD of
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Table 1. Summary and comparison of calibration results for traditional and virtual calibration objects. The pose angles are illustrated in Figure[p|

Calibration Type Metric Traditional Virtual
Color Initial Euclidean distance between average camera colors | 15.92 7.48
Euclidean distance after linear color transformation 14.72 6.86
. . Mean of pixel-to-mm measurements 710.12 711.16
Spatial Resolution — -
Standard deviation of pixel-to-mm measurements 2.35 4.56
Distance between microscope camera centers in mm Roughly 34-35 | 34.57
Pose Angle to next camera (8 in degrees) 77 76.4
Angle between cameras (§ in degrees) 79 79.8

Figure 3. Spatial calibration of about Tmm? FOV using an image of
(left) a traditional stage micrometer and (middle) an image of iPhone
LCD screen with (right) automated detection of the virtual object ren-
dered by the iPhone LCD (right).

Figure 4. (Left) A microscopic image of one tick mark on a ruler with
millimeter accuracy. (Right) A microscopic image of an iPhone LCD
screen with pulsing lines used as a virtual calibration object.

an iPhone. The iPhone LCD is placed under an array of micro-
scopes as illustrated in Figure [1] (right). It renders temporally
varying pixel intensities that represent a dynamic virtual cal-
ibration object. There are three current virtual calibration ob-
jects. The first is a dynamic web page with varying intensities
of each red, green, and blue color for color calibration: see Fig-
ure [2] (right). The left image in Figure 2] shows a microscope
image of a green printed square on a paper imaged accord-
ing to the configuration shown in Figure [I| (top left). The con-
straints of printing and paper imaging give the pixels a va-
riety of colors and intensities, and yield a static semi-regular
structure. The right image in Figure [2] shows a microscope

Center

Figure 5. Definition of angles to next camera (B) and between cameras
(8) for pose estimation. FOV: Field of view.

image of a green pattern rendered by a smartphone LCD that has
very little variation in color and intensity, a very regular struc-
ture, and changes intensity and color over time with a known
speed (i.e., green, intensity 255 — green, intensity 0 — red, in-
tensity 255 — ...).

The second is a static web page with a checkerboard pat-
tern for spatial calibration: see Figure [B} The third is a dynamic
web page with moving lines in two orthogonal directions with
known line spacing and motion vectors for pose estimation: see
Figure 4} Our custom-developed software processes the LCD
renderings captured by each microscope to determine the cali-
bration parameters. The preliminary accuracy results for tradi-
tional and virtual calibration objects are summarized in Table [T}

Our results show that virtual object-based calibration is over-
all as accurate as physical object-based calibration: see Table

In other words, the results of camera integration are similar
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Table 2. Calibration data acquisition rates for traditional and virtual
objects.

Acquisition Rate Data/Minute

Calibration Type/Object | Traditional Virtual
Color 2 600
Resolution 1 3600
Pose 0.1 8

whether we use traditional or virtual calibration objects. How-
ever, the virtual calibration objects have several key advan-
tages. They can be changed quickly and without significant cost.
LCD rendering and microscope imaging them leads to a higher
signal-to-noise ratio than imaging traditional calibration objects:
see Figure 3| In addition, they are able to include dynamic pat-
terns and acquire calibration data at higher rates: see Table
Higher acquisition rates are important for achieving higher sta-
tistical significance in the calibration results.

In the future, we plan to investigate the relationship between
virtual object rendering and the display properties,* and to
acquire real video streams to study live cells, nematodes, and
insect behavior.

This work has been supported by the NIST 2013 SURF Program NIST.
We would like to thank Ganesh Saiprasad and Kiran Bhadriraju at
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Disclaimer

Commercial products are identified in this document to spec-
ify the experimental procedure adequately. Such identification
is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it in-
tended to imply that the products identified are necessarily the
best available for the purpose.

10.1117/2.1201403.005223 Page 3/3

Author Information

Peter Bajcsy and Mary Brady
National Institute for Standards and Technology (NIST)
Gaithersburg, MD

Peter Bajcsy is a computer scientist at NIST working on au-
tomatic transfer of image content to knowledge. His scientific
interests include image processing, machine learning, and com-
puter and machine vision. He has co-authored more than 24
journal papers, eight book chapters, and close to 100 conference

papers.

Mary Brady is the manager of the Information Systems Group
in NIST’s Information Technology Laboratory (ITL). The group
focuses on developing measurements, standards, and un-
derlying technologies that foster innovation throughout the
information life cycle from collection and analysis to sharing and
preservation.

Jacob Siegel
University of Maryland at College Park
College Park, MD

Jacob Siegel is a Computer Engineering major at the Univer-
sity of Maryland College Park. He participated in the NIST 2013
Summer Undergraduate Research Fellowship (SURF) program.
His research interests include camera calibration and image pro-
cessing.

References

1. B. Wilburn, N. Joshi, V. Vaish, E. T. Emilio, A. Barth, A. Adams, M. Horowitz, and
M. Levoy, High performance imaging using large camera arrays, ACM Trans. Graph.
24 (3), pp- 765-776, 2005.

2. F. Remondino and C. Fraser, Digital camera calibration methods: considerations and
comparisons, Int’l Archiv. Photogram. Remote Sens. Spat. Inf. Sci. 36 (5), pp. 266—
272,2006. http:/ /www.isprs.org/proceedings/XXXVI/part5/paper/
REMO_616.pdf

3. A.Ilie and G. Welch, Ensuring color consistency across multiple cameras, 10th IEEE
Int’l Conf. Comp. Vis. (ICCV’05) 2, pp. 1268-1275, 2005. d0i:10.1109 /ICCV.2005.88
4. J. M. Libert, P. A. Boynton, and E. F. Kelley, An assessment standard for the evalua-
tion of display measurement capabilities, 8th Color Im. Conf. 2, pp. 217-221, 2000. See
also http://color.org/events/medical /Boynton.pdf

© 2014 SPIE



http://www.isprs.org/proceedings/XXXVI/part5/paper/REMO_616.pdf
http://www.isprs.org/proceedings/XXXVI/part5/paper/REMO_616.pdf
http://color.org/events/medical/Boynton.pdf

