
Spatial Computations over Terabyte-Sized Images on Hadoop Platforms

Peter Bajcsy, Phuong Nguyen, Antoine Vandecreme, Mary Brady
Software and Systems Division, Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD

e-mail: {peter.bajcsy, phuong.nguyen, antoine.vandecreme, mary.brady}@nist.gov

Abstract—Our objective is to lower the barrier of executing
spatial image computations in a computer cluster/cloud
environment instead of in a desktop/laptop computing
environment. We research two related problems encountered
during an execution of spatial computations over terabyte-
sized images using Apache Hadoop running on distributed
computing resources. The two problems address (a) detection
of spatial computations and their parameter estimation from a
library of image processing functions, and (b) partitioning of
image data for spatial image computations on Hadoop
cluster/cloud computing platforms in order to minimize
network data transfer. The first problem is solved by designing
an iterative estimation methodology. The second problem is
formulated as an optimization over three partitioning schemas
(physical, logical without overlap and logical with overlap),
and evaluated over several system configuration parameters.
Our experimental results for the two problems demonstrate
100% accuracy in detecting spatial computations in the Java
Advanced Imaging and ImageJ libraries, a speed-up of 5.36
between the default Hadoop physical partitioning and
developed logical image partitioning with overlap, and 3.14
times faster execution of logical partitioning with overlap than
the one without overlap. The novelty of our work is in
designing an extension to Apache Hadoop to run a class of
spatial image processing operations efficiently on a distributed
computing resource.

Keywords: Spatial image operations; Hadoop; Image
partition; Distributed computing

I. INTRODUCTION
Our overarching goal is to automate transitions of image
processing computations from a single desktop computer to
a cloud/cluster computational resource. Among all possible
image processing operations, we identified a class of spatial
image computations that are suitable for such a transition.
The spatial image computations operate on a set of
contiguous image regions that can be performed in parallel.
The regions in a set might vary in size and shape, and might
spatially overlap. The sub-division of spatial image
computations is summarized in Table 1. The rows and
columns of Table 1 represent characteristics in terms of
image region size, presence of overlapping image regions to
compute the resulting values, desired image partitions to co-
locate image data with the computation on a cluster node,
and the inputs for performing desired image partitions. The
term “logical” refers to a partition based on an image pixel
location while “physical” denotes a partition based on a file

storage location. If a spatial computation and image values
are not co-located then overall computational time increases
due to network transfers of data to each computational node.
In this paper, one of our technical goals is to design an
image sub-area distribution schema that minimizes the
network transfer for spatial computations.

TABLE 1: SUB-DIVISION OF SPATIAL IMAGE COMPUTATIONS AND ITS
RELEVANCE TO IMAGE PARTITION.

Types of spatial
computations:

examples

Input
Image
Region

Overlap
type

Desired
Image

Partition

Input to
Logical

Partition

Pixel-based:
Thresholding

Fixed size No
overlap

Physical or
logical

without
overlap

None

Kernel-based:
Convolution

Fixed size With
overlap

Logical
with

overlap

Kernel area
size

Segment-based:
Feature extraction

Variable
size

No
overlap

Logical
without
overlap

Mask

Bounding box-
based:

Background
correction

Variable
size

With
overlap

Logical
with

overlap

Bounding
boxes

 The motivation for our work comes from the fact
that implementations of image spatial computations are
ubiquitous in image software packages, embedded in many
image processing methods, designed to run on desktops, and
applied by a large number of users in imaging and image
processing communities. However, the current desktop
implementations do not perform successfully on terabyte-
sized images (i.e., reporting out-of-memory error or their
computational time is prohibitive), and do not parallelize
computations efficiently in cluster/cloud computing
environments. Based on Table 1, execution time of spatial
computations on a computer cluster can be minimized by
using image partitioning schemas and design patterns for
parallel software [1] that consider image regions (logical
partitions) rather than file arrays on a disk (physical
partitions). Once image regions are distributed to multiple
computational nodes, processing can be launched in parallel
without additional network transfers of image data. One of
the popular open source middleware platforms for parallel

execution is Apache Hadoop [2], [3]. It manages the
physical data partitioning, distribution across cluster nodes,
job management and result aggregation. Although Hadoop
has been widely used by researchers and industries for
parallel execution on distributed computational resources,
and it is known for its relative programming simplicity [3]–
[5], it lacks support for image processing. Specifically,
Hadoop does not take advantage of logical partitions of
images and therefore does not deliver the possible execution
speed-up for spatial image computations.

Fig. 1. Execution options for scientists to run spatial image
computations on desktop/laptop or cluster/cloud computing

platforms. HDFS denotes the Hadoop Distribution File System.

 To address the aforementioned deficiencies of
executing spatial image computations on Hadoop-managed
distributed computational resources, we investigated two
problems: (1) detection of spatial image computations in a
library of image processing methods, and parameter
estimation of detected spatial computations, and (2)
distribution of image regions according to logical partitions
to be processed by a single cluster node. The two problems
are illustrated in Fig. 1 from the perspective of a bench
scientist who is in a transition from a desktop to cluster
platforms. In order to handle terabyte-sized images on
cluster/cloud platforms, new software has to be designed to
decide whether physical or logical image partitioning is
needed, estimate parameters of logical partitions and then
distribute images accordingly to take a full advantage of
distributed cluster/cloud platforms.

The design of algorithms to detect and estimate
spatial overlap is approached by a spatial transformation
test. The spatial transformation test is performed by
comparing the outcomes of two image processing sequences
(image crop  software functionality) and (software
functionality  image crop). The design of a logical image
partitioning schema is an extension to Hadoop middleware
with MapReduce implementations of image processing
functionalities. The image regions (logical partitions) are
packaged into physical blocks and distributed to the Hadoop

Distribution File System (HDFS) such that each cluster
node would have all input image pixels needed to derive
output image values.
 The impact of our work is in providing scientists
with a methodology for detecting and distributing spatial
image computations using logical image partitions. The
novelty of our work is in designing the detection
methodology for spatial image computations and evaluating
experimentally multiple physical and logical partitioning
schemas on a Hadoop computer cluster. We have evaluated
the developed solutions using Java Advanced Imaging [6]
and ImageJ [7] libraries.

This paper is organized as follows. Section II
outlines related work. In Section III, we present the
theoretical underpinnings of the approaches to (a) the spatial
image computation detection and parameter estimation
problem and (b) the design of image partitioning schemas
for spatial image computations. Section IV describes the
experimental results including hardware and test data sets,
and Section V provides the summary of the work.

II. RELATED WORK
Spatial computations include convolution operations [8],
[9], down-sampling, morphological, enhancement and
denoising filtering [10], [11], gradient-based edge
detection, and template-based correlation [12]. These
computations are frequently embedded in more complex
algorithms developed for image segmentation, image
restoration, or object recognition and image scene
understanding. They can be found in many closed- or open-
source image processing packages such as Adobe
Photoshop® or ImageJ [7]. However, one does not know
what image processing operations are using kernel-based
computations in an unknown library. According to our
knowledge, the problem of detecting spatial image
operations in black-box software has not been addressed yet.
 The problem of efficient execution of spatial image
operations has been tackled by analyzing mathematical
models and by benchmarking implementations on various
hardware platforms in a few published papers. For example,
the authors in [9] focus on mathematical models of
convolution and their efficient implementations. This study
includes superscalar and parallel processing units (CPU,
DSP, and GPU), programmable architectures (e.g. FPGA),
and distributed systems (such as computer grids). It is well
stated in [8] that “Basically, the convolution is a memory-
bound problem, i.e. the ratio between the arithmetic
operations and memory accesses is low.” which is utilized
in our work as well. However, the past study does not
include computer cluster/cloud platforms or the MapReduce
paradigm in Hadoop. Our work is also considering a broader
category of spatial image computations than convolutions.
 The problem of image data distribution using
Hadoop has been investigated in [13] for bilateral image
smoothing. The work focuses only on bilateral image
smoothing as an example of local and non-iterative

computation because computations from the other three
categories of algorithms are more difficult to implement
efficiently using Hadoop. Our work differs by building an
extension to Apache Hadoop that will automatically perform
logical partition of images according to the estimated
parameters in the detection step. Our approach goes beyond
bilateral image smoothing and should be directly usable for
other local and non-iterative computations as an extension
to Hadoop.
 Finally, our approach of logical image partitioning
is directly related to the parallel design concepts (i.e., ghost
cell pattern [14] and structured grid computational pattern
[15]) that are applicable to computational grid applications
by using MapReduce and geometric decomposition
algorithm strategy [1]. The past work in [14] reports the
same concept as ours using Message Passing Interface
(MPI) while our work provides Hadoop implementation
with quantitative benchmarks. Other previous studies on
data locality investigated the minimum number and optimal
placement of replicas [16] or opted to transfer the
responsibility for optimal data locality to a job scheduler
working with a uniform data replication policy in a
distributed file system [17], [18].

III. SPATIAL COMPUTATIONS OVER TERABYTE-SIZED
IMAGES ON HADOOP PLATFORMS

This section describes two problems: A. The problem of
detecting spatial computation and parameter estimation
from a library of image processing functions. B. The
problem of an optimal image partitioning schema for spatial
image computations on Hadoop cluster/cloud computing
platforms with respect to minimum network data transfer.

A. Detection and Estimation of Spatial Computations in
Image Libraries

Let us assume that there exists a function F in a black-box
image processing library that creates an output image from
an input image by deriving each output value at location
𝑥⃗ ∈ ℤ𝐷 (𝐷 = 2,3, …) from a set of input image values that
include the location 𝑥⃗. Fig. 2 shows an example of such an
image library function that is denoted as a spatial image
computation. For simplicity, we will proceed with 𝐷 = 2.

Fig. 2: An image library function is labeled as a spatial

computation without or with overlap if it will compute one red
pixel in output image from one or many pixels around the same

location in input image.

The problems of detecting spatial computation among image
library functions and estimating its spatial extent are
approached by (a) forming an objective function 𝑓 in

equation (1) and (b) evaluating 𝑓 to find subsets of input
pixels 𝐴(𝑥⃗) for which 𝑓 = 0.

𝒇(𝐀(𝐱�⃗), 𝐈𝐈𝐍, 𝐅) =
∑ | 𝐂𝐑𝐎𝐏[𝐅(𝐈𝐈𝐍(𝐱�⃗ 𝐢))] − 𝐅[𝐂𝐑𝐎𝐏(𝐈𝐈𝐍(𝐱�⃗ 𝐢))]|𝐱�⃗ 𝐢∈𝐀(𝐱�⃗) (1)

where 𝐼𝐼𝑁 is an input image modeled as a mapping 𝐼𝐼𝑁: 𝑥⃗ ∈
 ℤ𝐷 → 𝑦 ∈ ℤ; 𝐹: 𝐼𝐼𝑁(𝐴(𝑥⃗)) → 𝐼𝑂𝑈𝑇(𝑥⃗) is a function in an
image processing library, and CROP is an image sub-setting
operation 𝐶𝑅𝑂𝑃: 𝐼𝐼𝑁(𝑥⃗𝑖 ∈ ℤ𝐷) → 𝐼𝐶𝑅𝑂𝑃(𝑥⃗𝑖 ∈ 𝐴(𝑥⃗)) ⊂ 𝐼𝐼𝑁 .
For a given input image 𝐼𝐼𝑁 and a function 𝐹 with pre-set
parameters, the objective function 𝑓 depends only on the
parameters of 𝐴(𝑥⃗) . The parameters of 𝐴(𝑥⃗) (i.e., input
image region in TABLE 1) might vary or be constant with
image location 𝑥⃗ as would be the case of a fixed size spatial
kernel (𝐴(𝑥⃗) = 𝐴).

Fig. 3. Overview of the algorithm for detecting spatial overlap and

estimating spatial kernel.

 Fig. 3 and the algorithmic pseudo-code below
illustrate the computation of an objective function and the
iterative nature of the search for parameters of 𝐴.
Algorithm for detecting spatial overlap and estimating
spatial rectangular kernel:
Create a set of image areas of 𝐴 = 1𝑥1 size (area of one

pixel).
Compute 𝑓(𝐴, 𝐼𝐼𝑁, 𝐹) for all image areas in a set.
if All values of 𝑓(𝐴, 𝐼𝐼𝑁, 𝐹) are zero then
 the computation is spatially local without spatial
 overlap and hence use logical partitioning without
 overlap
else Create a set of point-centered rectangular areas
 𝑆𝑃𝐶 = {𝐴𝑖} around the image center pixel with varying
 dimensions 𝐴𝑥 and 𝐴𝑦.
 Compute 𝑓(𝐴𝑖 ∈ 𝑆𝑃𝐶, 𝐼𝐼𝑁, 𝐹) for all image areas
 if There exists 𝑓(𝐴∗ ∈ 𝑆𝑃𝐶, 𝐼𝐼𝑁, 𝐹) = 0 then
 the computation is spatially global with spatial
 overlap and its rectangular kernel is 𝐴∗, thus, use
 logical partitioning with overlap.
 else The computation is not spatial and hence physical
 partitioning can be directly applied.

B. Image Partitioning Schema for Spatial Computations on
Hadoop Platforms

The information about spatial image computations can be
utilized to address the problem of an optimal image
partitioning schema on Hadoop cluster/cloud computing
platforms with respect to minimum network data transfer.
Image partitioning for parallel execution can be performed
based on logical image regions rather than physical chunks
of an image file. We illustrate the advantage of logical
image partitioning in Fig. 4 where there is no need to
exchange data between nodes during runtime. The goal is to
co-localize an input image sub-region with the computation
of the corresponding output value on each cluster node.

Fig. 4: Examples of image partitioning for a spatial computation of

an average of 3x3 image pixels with overlapping four image
regions. The computation is illustrated for a single node, and two

and four distributed computational nodes with no exchange of
pixels between nodes during runtime.

1) Mathematical Framework
In order to evaluate the runtime benefits achieved by using
logical partitions for spatial image computations as
illustrated in Fig. 4, we focus on the speed-up of going from
single processor desktop to a computer cluster with P
processors. In general, the speed-up is defined as a ratio of
the time using one processor and P processors according to
equation (2). It can be viewed as a function of the number of
processors or the problem/data size (strong versus weak
scalability following Amdahl’s and Gustafson’s laws [19]).

 𝑆(𝑃) = 𝑇(1)
𝑇(𝑃) (2)

For computer clusters and cloud computing resources, the
speed-up has dependencies on the number of nodes 𝑁, the
node parameters 𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖) such as the number of
processors 𝑃𝑖 and the RAM size 𝑀𝑖 , the data parameters
such as the total size of data 𝐷 and data partitioning
𝐷𝑃𝑘 [type={physical, logical}, size= |𝐷𝑃𝑘|] packaged into
blocks of size 𝐵 for distribution across 𝑁 cluster nodes, and
the data transfer parameters 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎) of the network
connecting the cluster nodes and the storage array with data.

The parameter extension in equation (2) to more complex
ones for a computer cluster is presented in equation (3).

𝑆(𝑃) → 𝑆�𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖), 𝐷𝑎𝑡𝑎(𝐷, 𝐷𝑃𝑘, 𝐵), 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎)�;
 𝑃 = ∑ 𝑃𝑖𝑁

𝑖=1 (3)

For a specific case of a computer cluster running Apache
Hadoop middleware to manage computations using
MapReduce, one can expand equation (3) and the speed-up
dependencies can then be expressed as shown in equation
(4).

𝑆 =

𝑇(𝑁 = 1,𝑁𝑜𝑑𝑒(𝑃𝑖 = 1, 𝑀𝑖), 𝐷𝑎𝑡𝑎(𝐷),𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))
𝑇(𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖),𝐷𝑎𝑡𝑎(𝐷,𝐷𝑃𝑘, 𝐵, 𝑅),𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))/𝐻𝑎𝑑𝑜𝑜𝑝)

= [𝑇𝑁𝐸𝑇(𝐷) + 𝑇𝐼𝑂(𝐷) + 𝑛𝑘𝑥𝑇𝐶𝑃𝑈(𝐷𝑃𝑘)] /

 �
𝑇𝐻𝐷𝐹𝑆(𝐷, 𝑅) +

𝑇𝑀𝑎𝑝(𝐷𝑃𝑘) + 𝑇𝑅𝑒𝑑(𝐷𝑃𝑘)� (4)

where in addition to the variables introduced in equation (3),
𝑅 is the number of distributed image replicas, and 𝑛𝑘 is the
number of jobs per image to complete. The numerator in
equation (4) includes the time needed for an execution on a
single node. It consists of the network transfer time 𝑇𝑁𝐸𝑇 to
read and write the data between a user disk and his/her
computational node, 𝑇𝐼𝑂 to load one input image and save the
results, and the time 𝑇𝐶𝑃𝑈 to perform one of 𝑛𝑘
computations operating on an input image sub-area 𝐷𝑃𝑘 .
The denominator adds the times needed (a) to upload the
input data to Hadoop Data File System (HDFS), replicate
the data blocks across N cluster nodes and retrieve the
results: 𝑇 𝐻𝐷𝐹𝑆 , (b) to perform Map tasks: 𝑇𝑀𝑎𝑝 , and (c) to
shuffle values and reduce outputs to form a final result during
Reduce phase: 𝑇𝑅𝑒𝑑. For illustration purposes, the parameters
in equations (3) and (4) for the examples shown in Fig. 4
would be: 𝑁=1, 2 or 4, 𝑁𝑜𝑑𝑒(𝑃𝑖 = 1,𝑀𝑖 > 𝐷) , 𝐷 = 4𝑥4
pixels, 𝐷𝑃𝑘 = [type={logical}, size = 3x3 or 3x4 pixels],
𝐵 >12 pixels, 𝑛𝑘 = 4 , 𝑅 =1, and 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎) are not
specified.
 Our logical partitioning schema focuses primarily
on reducing the time for Map tasks that can be expressed in
equation (5).

𝑇𝑀𝑎𝑝(𝐷𝑃𝑘) = 𝑛𝑘

𝑃
𝑥 �𝑇𝐼𝑂(𝐷𝑃𝑘) + 𝑇𝑁2𝑁 �

1
𝑅

, 𝐷𝑃𝑘� + 𝑇𝐶𝑃𝑈(𝐷𝑃𝑘)� (5)

where 𝑇𝐼𝑂 is the time to read and write data to and from
RAM, 𝑇𝑁2𝑁 is the time to transfer the pixels that are not
available at a compute node to complete a computation, and
𝑇𝐶𝑃𝑈 is the time to perform computation. Our objective is to
maximize the speed-up 𝑆 over physical and logical data
partitions 𝐷𝑃𝑘 with and without overlapping pixels (denoted
as ghost cells in [14]) by minimizing the communication
time pertinent to input data transfers to HDFS (𝑇𝐻𝐷𝐹𝑆), and
between the nodes to retrieve necessary data during the Map

phase (𝑇𝑁2𝑁). Both objectives are presented in the equations
below.

max𝐷𝑃𝑘 𝑆((𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖), 𝐷𝑎𝑡𝑎(𝐷, 𝐷𝑃𝑘, 𝐵, 𝑅), 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))/
𝐻𝑎𝑑𝑜𝑜𝑝) (6)

 min𝐷𝑃𝑘 �
𝑇𝐻𝐷𝐹𝑆(𝐷, 𝑅) +

 𝑛𝑘
𝑃
𝑥𝑇𝑁2𝑁 �

1
𝑅

, 𝐷𝑃𝑘�
� (7)

Note: The minimization problem can also be interpreted as
an evaluation of input image partitioning schemas. The
execution time on a single node assumes that the input
image of width/height dimensions 𝑊𝐼𝑛𝑥𝐻𝐼𝑛 and the output
image of size 𝑊𝑂𝑢𝑡𝑥𝐻𝑂𝑢𝑡 can be handled by its RAM
(loading entire input image or image regions followed by
processing).

2) Image Partitioning Schema
Given the objective functions in equations (6) or (7), we
devised an image partitioning schema for logical partitions
without or with overlapping pixels into a block size |𝐷𝑃𝑘| to
be distributed across computer cluster nodes. For logical
partitioning with additional inputs (see Fig. 1) including a
mask or a set of bounding boxes, we package pixels defined
by a mask label or enclosed by a bounding box into one
logical set 𝐷𝑃𝑘 . This turns into a bin packing problem [20]
where logical sets of pixels of different cardinality |𝐷𝑃𝑘|
must be packed into a finite number of physical blocks 𝑁𝐵
in a way that minimizes the number of blocks used. In
general, an optimal number of blocks would be equal to the
number of processors P.
 Logical image partitioning for spatial kernel-based
computations is designed with or without considerations of
a kernel (sub-area) overlap for adjacent pixels (see Fig. 5).
In order to obtain image regions 𝐷𝑃𝑘 containing a union of
kernels for neighboring pixels:
𝐷𝑃𝑘 = ∪ �𝐴�𝑥��⃗ 𝑗�, 𝐴�𝑥��⃗ 𝑗+1�, … � , we cut each image to the
desired number of regions 𝑁𝐵 by 𝐷𝑥 and 𝐷𝑦 cuts along each
input image dimension 𝑁𝐵 = (𝐷𝑥 + 1)𝑥(𝐷𝑦 + 1) . The
blocks are either distributed directly to cluster nodes for
logical partitions without overlap or are extended by the
overlapping pixels for logical partitions with overlap as
illustrated in Fig. 5. The extension is performed by adding
to each block 𝐾𝑥 number of input image columns and 𝐾𝑦
number of rows where these two numbers correspond to the
additional input pixels in each dimension that are needed to
compute output values using the spatial kernel 𝐴�𝑥��⃗ 𝑗�.

IV. EXPERIMENTAL RESULTS
Experimental results follow the organization of Section III
describing the two problems (detection/estimation of spatial
computations, optimal image partitioning schema) with
additional information about benchmark configurations for
evaluating the image partitioning schema.

Fig. 5: Image partitioning with and without overlap by horizontal
and vertical cuts. This example shows an image partition to four

blocks for a kernel size 3x3 (A(50) in yellow). The values of block
𝑲𝒙 and 𝑲𝒚 are derived from unions of horizontal or vertical

kernels of adjacent pixels.

A. Benchmark Configurations
1) Terabyte-sized Image Dataset

We experimented with 161 images of the dimensions (width
∈[22 881, 22 980]) x (height ∈[20 937, 21 123]), and 16 bits
per pixel (about 1 GB per image). These images have been
stitched from 127 512 files that represent 18 x 22 = 396
fields of view (FOVs), 161 time points and 2 imaging
channels. One FOV is about 2.8 MB. Each stitched image
covers approximately 180 mm2 of a stem cell colony dish,
over five days under both phase contrast and green
fluorescence channels, with images acquired every 15
minutes. The images are stored in a TIFF file format (143
GB). Each frame has approximately 475 million pixels with
2 bytes per pixel. For benchmarking and stress testing, we
used 161 images from one channel.

2) Hardware Platform
We have executed all Hadoop cluster benchmarks on the
NIST Raritan cluster with specifications provided in TABLE
2. The cluster nodes had four processors (mostly Intel Xeon
and Dual Core AMD) and 16 GB of RAM. We used the
default Apache Hadoop configurations with 6 GB per Java
process, the number of replicas R equal to two, and the
block size B set to the 64 MB default size.

TABLE 2: SPECIFICATIONS OF NIST RARITAN COMPUTER CLUSTER

 Specs Cluster

Hardware Cluster
Nodes

800 computer nodes having from 2 to 16
logical cores with 4 to 32GB of RAM

Networking 1Gbit/second
Software Java

Virtual
Machine

Java version "1.7.0_17"
Java(TM) SE Runtime Environment (build

1.7.0_17-b02)
Java HotSpot(TM) 64-Bit Server VM (build

23.7-b01, mixed mode)

Hadoop hadoop-1.0.3.16
Operating

System
CentOS 5.9

Linux 2.6.18-274.3.1.el5 x86_64
File System Lustre parallel distributed file system for

/home and ext3 for the root used by HDFS

B. Results From Detecting and Estimating Computations
with Spatial Overlap

We tested a set of image operations from Java Advanced
Imaging (JAI) [6] and ImageJ [7] using synthetic images
shown in Fig. 6. These synthetic images represent a wide
variety of statistical spatial intensity arrangements for
detecting local versus global properties.

Fig. 6: Example synthetic images that represent randomness

in intensity values (left), spatial gradient changes of
intensity (middle), and checkerboard pattern of intensities

(right).
The set of image operations was selected from the following
categories.
-Unary and binary pixel operations that require only a single
input pixel to compute one output pixel. Examples: addition,
multiplication, absolute, and threshold.
-Neighbor operations that require several pixels around a
pixel in the input image to compute one output pixel.
Examples: convolution, median filter, and morphological
filters.
-Other operations that do not fall into a class of spatial
computations. Examples: rotation or image flipping along
any axis.
The test results are summarized in TABLE 3. All results
matched the ground truth.

TABLE 3: SUMMARY OF THE DETECTION AND ESTIMATION
EXPERIMENTS

Image operation Software
package

Category of
image

operation

Recommended
Image

Partitioning
Multiply by

constant
JAI, ImageJ unary Logical without

overlap
Gradient

magnitude
JAI neighbor Logical with 3 x 3

overlap
Max Filter with
variable mask

JAI neighbor Logical with
detected overlap

Image convolution JAI, ImageJ neighbor Logical with
detected overlap

AutoThreshold ImageJ unary Logical without
overlap

Morphological
erosion

ImageJ neighbor Logical with 3 x 3
overlap

Median filter ImageJ neighbor Logical with 3 x 3
overlap

Flip horizontal ImageJ other Physical

C. Runtime Results Using Image Partitioning Schemas
Equation (7) can be evaluated experimentally over the types
of image partitioning schemas and a range of image regions
and kernels determining the size of 𝐷𝑃𝑘 [type ={physical,
logical with overlap, logical without overlap}, size= |𝐷𝑃𝑘|].
Table 4 summarizes the parameters we have varied during
experimental benchmarks. We documented the
implementations of image partitioning schemas in C.1) and
reported the experimental comparisons in C.2) using the
configurations specified in Section A.

TABLE 4: SUMMARY OF PARAMETERS VARIED DURING EXPERIMENTAL
BENCHMARKS

Parameters Values
Number of cluster

nodes N
20,40,60,80,100,120

Partitioning schema Physical (PB), Logical without (LB) and with
overlap (LBO)

Image region size 1 MB, 10 MB, 30 MB, 61 MB
Number of Map tasks 1, 2, 6

Kernel size
𝐴 = 𝐴𝑥 ∗ 𝐴𝑦

3x3, 25x25, 51x51, 75x75, 101x101

Data size 40, 161 images (1 GB per image)

1) Parallel Distributed Implementations
We implemented the logical partitioning with and without
overlap as an extension to the existing physical partitioning
schema in Apache Hadoop following Section III.B. During
the push of an image into HDFS from a file storage system,
the image is subdivided into regions with or without
overlapping pixels. An image region is converted into an
image record which is defined as a key/value pair. The key
is generated from the file name of the whole image. The
value holds intensities of an image region with or without
overlapping pixels, and the region position in the coordinate
system of the input image. Multiple image records are
stored using Hadoop Sequential File Format (i.e.,
SequenceFile objects) to avoid problem of many small files
in Hadoop HDFS.
 During the Hadoop Map phase, a spatial image
computation is applied to every image record to generate an
intermediate image record represented by a new key/value
pair. During the Hadoop Reduce phase, values in
intermediate records with the same key are shuffled and
sorted among the worker nodes. The Reduce function
retrieves computed output image pixels/regions from the
same input image and produces the final output image using
the information associated with image records.
Table 5 provides details of Hadoop MapReduce
implementations for the three image partitioning schemas
including physical, logical without overlap, and logical with
overlap.

TABLE 5: SUMMARY OF HADOOP IMPLEMENTATIONS FOR THREE
IMAGE PARTITIONING SCHEMAS INCLUDING PHYSICAL, LOGICAL
WITHOUT OVERLAP, AND LOGICAL WITH OVERLAP

Hadoop
Implementation

 Map Reduce

logical image
partitioning

WITH overlap

Input Image records
(key/value pairs)

and location of all
image regions

Key and list of
values for each

input image

Output Image records
(key/value pairs)

One output image
per input image

Function image
computation on
image records

Stitch all computed
image records with

the same key.
Write output as a

single image to
HDFS

logical image
partitioning
WITHOUT

overlap

Input Image records
(key/value pairs)

and location of all
image regions

Key and list of
values for each

input image

Output Image records
(key/value pairs)

One output image
per input image

Function for each image
record:

-Retrieve image
region position

-Load all
neighboring

regions of the
image record from

HDFS
-Form image
regions with

overlapping pixels
along its borders
-Execute image

computation on a
region and extract
computed region

without overlap as
an output image

record

Stitch all computed
image records with

the same key.
Write output as a

single image to
HDFS

physical
partitioning of

NON SPLIT
images

Input Key: image
number

Value: entire
image loaded

from HDFS

None

Output Key: write
computed entire
image directly to

HDFS
Value: computed

region

None

Function image
computation on

entire image

None

2) Experimental Comparisons of Logical and Physical
Image Partitioning Schemas
All experimental benchmarks are obtained using
morphological dilation operation applied to the stem cell
images described in Section A.1). Each compute node came
with 4 processors and 16 GB RAM according to the cluster

specifications in Section A.2). The physical partitioning
schema used 64 MB block size for pushing the data to
Hadoop HDFS. The block size for the two logical
partitioning schemas varied according to Table 4.

a) Strong and weak scaling
We have varied the input image size and the number of
nodes to benchmark the scaling performance according to
weak and strong scaling assumptions [19]. Fig. 7 and Fig. 8
show runtime dependency for morphological dilation with a
kernel size A=101x101 on the number of cluster nodes for
40 and 161 images and multiple partitioning configurations.
The number of file replication R is two.

Fig. 7: Runtime as a function of the number cluster nodes. The

logical partitioning with overlap (LBO) into 10MB image regions
outperforms the physical partitioning (PB) for 161 images.

Fig. 7 illustrates close to linear scaling for Hadoop logical
partitioning with overlap (LBO) for up to 120 cluster nodes
with the total of 480 processors. The average relative speed-
up of 5.36 is computed as the ratio of time averages over the
collected data points using physical (PB) and logical
partitioning with overlap (LBO) and 10 MB image regions.
The difference in the runtimes is due to not only the logical
partitioning but also the ability to run up to 6 Map tasks
concurrently. In addition, the RAM requirement to
computations using PB is 8 GB in comparison to less than 1
GB using LBO.
 Fig. 8 shows that the Hadoop physical partitioning
(PB) configuration does not scale for the number of cluster
nodes larger than 60. There are idle nodes and the cluster is
unbalanced. The lack of scaling could also be due to the
executions of duplicated tasks on big images for failed tasks
and waiting for the execution of the last task. The scalability
of the computation clearly benefits from splitting the big
images into image regions in a distributed computer cluster
environment.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

Ru
nt

im
e

[s
]

Number Of Nodes

Morphological Dilation: 161 Images

PB, 1 Map LBO, 10MB, 6 Maps

Fig. 8: Runtime as a function of the number cluster nodes. The

logical partitioning with overlap (LBO) outperforms the physical
partitioning (PB) for 40 images regardless of the image region size.

b) Logical partitioning schemas
We evaluated the runtime difference between logical
partition with and without overlap as a function of the
number of cluster nodes in Fig. 9. The benchmarks are
collected for morphological dilation with a kernel size
A=101x101 on varying number of cluster nodes. The logical
partitioning size of an image region was fixed to 10 MB and
six Map tasks were executed on each node. One can
compute a runtime speed-up as a ratio of logical partitioning
with overlap over without overlap from the data shown in
Fig. 9. The average speed-up over varying number of cluster
nodes is 3.14 (minimum=2.2 and maximum=5.4). We have
also analyzed percentages of data local tasks for the 40
processed images based on log files. The difference in
percentages ranges between 15 and 65 (LBO, 1 MB versus
PB) and corresponds to the extra time spent on node to node
data transfer 𝑇𝑁2𝑁.

Fig. 9: Comparison of runtimes using logical partitioning with and

without overlap.

In addition, we explored the dependency of runtime on the
kernel size of an image morphological dilation. Fig. 10
shows the benchmarks for a configuration processing 40
image files on 40 cluster nodes and a fixed image region

size of 10 MB and 2 Map tasks per node. We concluded that
LBO always has lower runtime. The runtime difference is
almost constant with the kernel size due to the transfer time
needed by LB to bring a whole data block containing the
missing pixels to the compute node.

Fig. 10: Runtime dependency on the size of a morphological

dilation kernel for the two logical partitioning schemas with and
without overlap. The benchmarks are collected using 40 cluster

nodes, 10 MB image regions and 2 Map tasks.

V. SUMMARY
We have analyzed a class of spatial image computations
applied to terabyte-sized images and executed on a Hadoop
computer cluster platform. We addressed two problems that
would lower the barrier for bench scientists to process large
size images by (a) detecting spatial image computations in a
library of image processing functions, and (b) partitioning
image data for spatial image computations on Hadoop
cluster/cloud computing platforms in order to minimize
network data transfer. Our theoretical framework focused on
formulating both problems as estimation problems, and
evaluating various image partitioning configurations. The
experimental part documented accuracy and runtime
performance of multiple image partitioning schemas for
morphological dilation used as an example of a spatial
image processing operation. The results for the detection
problem demonstrated 100% accuracy in detecting spatial
computations. The results with various image partitioning
schemas yielded a significant speed-up (5.36 and 3.14) of
the computations on Hadoop clusters when comparing
physical or logical partitioning without overlap and logical
partitioning with overlap.
 In the near future, we plan to benchmark other
image processing computations and disseminate the Hadoop
extension to the image processing community. Overall,
there are still unanswered questions about the distribution of
image data access (uniform or skewed), temporal locality in
data access, and how much of multi-dimensional image data
is collocated when being accessed. In order to understand
the relationship between data parallelism and computational

0

500

1000

1500

2000

2500

3000

0 50 100

 R
un

tim
e

[s
]

Number Of Nodes

Morphological Dilation: 40 Images

PB, 1 Map

LBO, 1MB, 6 Maps

LBO, 10MB, 6 Maps

LBO, 30MB, 6 Maps

LBO, 61MB, 6 Maps

PB, 6 Maps

0

500

1000

1500

0 20 40 60 80 100

Ru
nt

im
e

[s
]

Number Of Nodes

Logical Partitioning With and Without
Overlap

LB, 10MB, 6 Maps LBO, 10MB, 6 Maps

0
100
200
300
400
500
600
700
800

3x3 25x25 51x51 75x75 101x101

R
un

tim
e

[s
]

Kernel size

Morphological Dilation: Kernel Size
LBO, 10MB, 2 Maps LB, 10MB, 2 Maps

efficiency, one has to examine specific degrees of
dependency among data points and data access patterns for
each class of image processing computations.

ACKNOWLEDGMENT
This work was sponsored by NIST as a part of the
Computational Science in Biological Metrology project. We
would like to acknowledge all project team members for
their contributions.

DISCLAIMER
Commercial products are identified in this document in
order to specify the experimental procedure adequately.
Such identification is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that
the products identified are necessarily the best available for
the purpose.

REFERENCES
[1] K. Keutzer, L. Berna, G. Timothy, and A. Beverly, “A Design

Pattern Language for Engineering (Parallel) Software :
Merging the PLPP and OPL Projects,” in Proceeding
ParaPLoP ’10 Proceedings of the 2010 Workshop on Parallel
Programming Patterns, 2010, pp. 1–8.

[2] T. White, Hadoop: The Definitive Guide MapReduce for the
Cloud, 3rd ed. O’Reilly Media, 2012, p. 528.

[3] O. O. Malley, “Hadoop Benchmarking,” in Workshop on Big
Data Benchmarking, 2012, no. May, pp. 1–13.

[4] Yahoo!, “Hadoop Tutorial from Yahoo!,” On-Line Tutorial,
2013. [Online]. Available:
http://developer.yahoo.com/hadoop/tutorial/module4.html.
[Accessed: 14-May-2013].

[5] Xyratex, “Using Lustre with Apache Hadoop,” 2010.
[Online]. Available:
http://wiki.lustre.org/images/1/1b/Hadoop_wp_v0.4.2.pdf.
[Accessed: 31-May-2013].

[6] JavaSoft, “Programming in Java Advanced Imaging,” Sun
Microsystems, 901 San Antonio Road Palo Alto, CA 94303
USA, 1.01, 1999.

[7] W. Rasband, “ImageJ & Fiji & ImageJA & ImageJ2,
Computer Program,” 2013. [Online]. Available:
http://rsbweb.nih.gov/ij/. [Accessed: 15-May-2013].

[8] D. Svoboda, “Efficient Computation of Convolution of Huge
Images,” in Image Analysis and Processing ICIAP 2011, G.
Maino and G. Foresti, Eds. Lecture Notes in Computer
Science; Springer-Verlag, 2011, pp. 453–462, Vol. 6978.

[9] P. Karas, D. Svoboda, K. Pavel, and S. David, “Algorithms
for Efficient Computation of Convolution Algorithms for
Efficient Computation of Convolution,” in In Design and
Architectures for Digital Signal Processing, 1st ed., Rijeka,
Croatia: IN-TECH, Open Science - Open Mind, 2013, pp.
179–207.

[10] I. N. Bankman, Handbook of Medical Image Processing and
Analysis, 2nd ed. Burlington, MA: Academic Press; Elsevier,
2009, p. 984.

[11] J. C. Russ, The Image Processing Handbook, Sixth. Boca
Raton, FL: CRC Press, Taylor& Francis Group LLC, 2011, p.
839.

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification, 2nd ed. New York: John Wiley & Sons, 2011,
p. 637.

[13] K. Potisepp, “Large-scale Image Processing Using
MapReduce,” Tartu University, 2013.

[14] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern,” in
Proceedings of the 2010 Workshop on Parallel Programming
Patterns - ParaPLoP ’10, 2010, pp. 1–9.

[15] K. Gonina, H. Bayandorian, and E. Strohmaier, “Structured
Grid Computational Pattern,” A Pattern Language for
Parallel Programming ver2.0, 2010. [Online]. Available:
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.
[Accessed: 16-Jun-2014].

[16] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng,
“CDRM: A cost-effective dynamic replication management
scheme for cloud storage cluster,” in IEEE Int’l Conf. Cluster
Computing (CLUSTER), 2010, pp. 188–196.

[17] P. Nguyen, T. A. Simon, M. Halem, D. Chapman, and Quang
Le, “A Hybrid Scheduling Algorithm for Data Intensive
Workloads in a Map Reduce Environment,” in 5th IEEE/ACM
International Conference on Utility and Cloud Computing
(UCC2012), 2012, pp. 161–167.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay Scheduling : A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling,” Eur. Conf. Comput. Syst., pp. 1–14, 2010.

[19] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun.
ACM, vol. 31, no. 5, pp. 532–533, 1988.

[20] B. Xia and Z. Tan, “Tighter bounds of the First Fit algorithm
for the bin-packing problem,” Discret. Appl. Math., vol. 158,
no. 15, pp. 1668–1675, Aug. 2010.

	I. Introduction
	II. Related Work
	III. Spatial Computations over Terabyte-Sized Images on Hadoop Platforms
	A. Detection and Estimation of Spatial Computations in Image Libraries
	B. Image Partitioning Schema for Spatial Computations on Hadoop Platforms
	1) Mathematical Framework
	2) Image Partitioning Schema

	IV. Experimental results
	A. Benchmark Configurations
	1) Terabyte-sized Image Dataset
	2) Hardware Platform

	B. Results From Detecting and Estimating Computations with Spatial Overlap
	C. Runtime Results Using Image Partitioning Schemas
	1) Parallel Distributed Implementations
	2) Experimental Comparisons of Logical and Physical Image Partitioning Schemas
	a) Strong and weak scaling
	b) Logical partitioning schemas

	V. Summary
	Acknowledgment

	Disclaimer
	References

