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Abstract—Our objective is to lower the barrier of executing 
spatial image computations in a computer cluster/cloud 
environment instead of in a desktop/laptop computing 
environment. We research two related problems encountered 
during an execution of spatial computations over terabyte-
sized images using Apache Hadoop running on distributed 
computing resources. The two problems address (a) detection 
of spatial computations and their parameter estimation from a 
library of image processing functions, and (b) partitioning of 
image data for spatial image computations on Hadoop 
cluster/cloud computing platforms in order to minimize 
network data transfer. The first problem is solved by designing 
an iterative estimation methodology. The second problem is 
formulated as an optimization over three partitioning schemas 
(physical, logical without overlap and logical with overlap), 
and evaluated over several system configuration parameters. 
Our experimental results for the two problems demonstrate 
100% accuracy in detecting spatial computations in the Java 
Advanced Imaging and ImageJ  libraries, a speed-up of 5.36 
between the default Hadoop physical partitioning and 
developed logical image partitioning with overlap, and 3.14 
times faster execution of logical partitioning with overlap than 
the one without overlap. The novelty of our work is in 
designing an extension to Apache Hadoop to run a class of 
spatial image processing operations efficiently on a distributed 
computing resource. 

Keywords: Spatial image operations; Hadoop; Image 
partition; Distributed computing  

I.  INTRODUCTION 
Our overarching goal is to automate transitions of image 
processing computations from a single desktop computer to 
a cloud/cluster computational resource. Among all possible 
image processing operations, we identified a class of spatial 
image computations that are suitable for such a transition. 
The spatial image computations operate on a set of 
contiguous image regions that can be performed in parallel. 
The regions in a set might vary in size and shape, and might 
spatially overlap. The sub-division of spatial image 
computations is summarized in Table 1.  The rows and 
columns of Table 1 represent characteristics in terms of 
image region size, presence of overlapping image regions to 
compute the resulting values, desired image partitions to co-
locate image data with the computation on a cluster node, 
and the inputs for performing desired image partitions. The 
term “logical” refers to a partition based on an image pixel 
location while “physical” denotes a partition based on a file 

storage location. If a spatial computation and image values 
are not co-located then overall computational time increases 
due to network transfers of data to each computational node. 
In this paper, one of our technical goals is to design an 
image sub-area distribution schema that minimizes the 
network transfer for spatial computations.  
 
TABLE 1: SUB-DIVISION OF SPATIAL IMAGE COMPUTATIONS AND ITS 
RELEVANCE TO IMAGE PARTITION.  

Types of spatial 
computations: 

examples 

Input 
Image 
Region 

Overlap 
type 

Desired 
Image 

Partition 

Input to 
Logical 

Partition 

Pixel-based: 
Thresholding 

Fixed size No 
overlap 

Physical or 
logical 

without 
overlap 

None 

Kernel-based: 
Convolution 

Fixed size With 
overlap 

Logical 
with 

overlap 

Kernel area 
size 

Segment-based: 
Feature extraction 

Variable 
size 

No 
overlap 

Logical 
without 
overlap 

Mask 

Bounding box-
based: 

Background 
correction 

Variable 
size 

With 
overlap 

Logical 
with 

overlap 

Bounding 
boxes 

  
 The motivation for our work comes from the fact 
that implementations of image spatial computations are 
ubiquitous in image software packages, embedded in many 
image processing methods, designed to run on desktops, and 
applied by a large number of users in imaging and image 
processing communities. However, the current desktop 
implementations do not perform successfully on terabyte-
sized images (i.e., reporting out-of-memory error or their 
computational time is prohibitive), and do not parallelize 
computations efficiently in cluster/cloud computing 
environments. Based on Table 1, execution time of spatial 
computations on a computer cluster can be minimized by 
using image partitioning schemas and design patterns for 
parallel software [1] that consider image regions (logical 
partitions) rather than file arrays on a disk (physical 
partitions). Once image regions are distributed to multiple 
computational nodes, processing can be launched in parallel 
without additional network transfers of image data. One of 
the popular open source middleware platforms for parallel 



execution is Apache Hadoop [2], [3]. It manages the 
physical data partitioning, distribution across cluster nodes, 
job management and result aggregation. Although Hadoop 
has been widely used by researchers and industries for 
parallel execution on distributed computational resources, 
and it is known for its relative programming simplicity [3]–
[5], it lacks support for image processing. Specifically, 
Hadoop does not take advantage of logical partitions of 
images and therefore does not deliver the possible execution 
speed-up for spatial image computations.  

 
Fig. 1. Execution options for scientists to run spatial image 
computations on desktop/laptop or cluster/cloud computing 

platforms. HDFS denotes the Hadoop Distribution File System.  

 To address the aforementioned deficiencies of 
executing spatial image computations on Hadoop-managed 
distributed computational resources, we investigated two 
problems: (1) detection of spatial image computations in a 
library of image processing methods, and parameter 
estimation of detected spatial computations, and (2) 
distribution of image regions according to logical partitions 
to be processed by a single cluster node. The two problems 
are illustrated in Fig. 1 from the perspective of a bench 
scientist who is in a transition from a desktop to cluster 
platforms. In order to handle terabyte-sized images on 
cluster/cloud platforms, new software has to be designed to 
decide whether physical or logical image partitioning is 
needed, estimate parameters of logical partitions and then 
distribute images accordingly to take a full advantage of 
distributed cluster/cloud platforms.  

The design of algorithms to detect and estimate 
spatial overlap is approached by a spatial transformation 
test. The spatial transformation test is performed by 
comparing the outcomes of two image processing sequences 
(image crop  software functionality) and (software 
functionality  image crop). The design of a logical image 
partitioning schema is an extension to Hadoop middleware 
with MapReduce implementations of image processing 
functionalities. The image regions (logical partitions) are 
packaged into physical blocks and distributed to the Hadoop 

Distribution File System (HDFS) such that each cluster 
node would have all input image pixels needed to derive 
output image values. 
 The impact of our work is in providing scientists 
with a methodology for detecting and distributing spatial 
image computations using logical image partitions. The 
novelty of our work is in designing the detection 
methodology for spatial image computations and evaluating 
experimentally multiple physical and logical partitioning 
schemas on a Hadoop computer cluster. We have evaluated 
the developed solutions using Java Advanced Imaging [6] 
and ImageJ [7] libraries. 

This paper is organized as follows. Section II 
outlines related work. In Section III, we present the 
theoretical underpinnings of the approaches to (a) the spatial 
image computation detection and parameter estimation 
problem and (b) the design of image partitioning schemas 
for spatial image computations. Section IV describes the 
experimental results including hardware and test data sets, 
and Section V provides the summary of the work. 

II. RELATED WORK 
Spatial computations include convolution operations [8], 
[9], down-sampling, morphological, enhancement and 
denoising filtering [10], [11],  gradient-based edge 
detection, and template-based correlation [12]. These 
computations are frequently embedded in more complex 
algorithms developed for image segmentation, image 
restoration, or object recognition and image scene 
understanding. They can be found in many closed- or open-
source image processing packages such as Adobe 
Photoshop® or ImageJ [7]. However, one does not know 
what image processing operations are using kernel-based 
computations in an unknown library. According to our 
knowledge, the problem of detecting spatial image 
operations in black-box software has not been addressed yet. 
 The problem of efficient execution of spatial image 
operations has been tackled by analyzing mathematical 
models and by benchmarking implementations on various 
hardware platforms in a few published papers. For example, 
the authors in [9] focus on mathematical models of 
convolution and their efficient implementations. This study 
includes superscalar and parallel processing units (CPU, 
DSP, and GPU), programmable architectures (e.g. FPGA), 
and distributed systems (such as computer grids). It is well 
stated in [8] that “Basically, the convolution is a memory-
bound problem, i.e. the ratio between the arithmetic 
operations and memory accesses is low.” which is utilized 
in our work as well. However, the past study does not 
include computer cluster/cloud platforms or the MapReduce 
paradigm in Hadoop. Our work is also considering a broader 
category of spatial image computations than convolutions. 
 The problem of image data distribution using 
Hadoop has been investigated in [13] for bilateral image 
smoothing. The work focuses only on bilateral image 
smoothing as an example of local and non-iterative 



computation because computations from the other three 
categories of algorithms are more difficult to implement 
efficiently using Hadoop. Our work differs by building an 
extension to Apache Hadoop that will automatically perform 
logical partition of images according to the estimated 
parameters in the detection step. Our approach goes beyond 
bilateral image smoothing and should be directly usable for 
other local and non-iterative computations as an extension 
to Hadoop. 
 Finally, our approach of logical image partitioning 
is directly related to the parallel design concepts (i.e., ghost 
cell pattern [14] and structured grid computational pattern 
[15]) that are applicable to computational grid applications 
by using MapReduce and geometric decomposition 
algorithm strategy [1]. The past work in [14] reports the 
same concept as ours using Message Passing Interface 
(MPI) while our work provides Hadoop implementation 
with quantitative benchmarks. Other previous studies on 
data locality investigated the minimum number and optimal 
placement of replicas [16] or opted to transfer the 
responsibility for optimal data locality to a job scheduler 
working with a uniform data replication policy in a 
distributed file system [17], [18].  

III. SPATIAL COMPUTATIONS OVER TERABYTE-SIZED 
IMAGES ON HADOOP PLATFORMS 

This section describes two problems: A. The problem of 
detecting spatial computation and parameter estimation 
from a library of image processing functions. B. The 
problem of an optimal image partitioning schema for spatial 
image computations on Hadoop cluster/cloud computing 
platforms with respect to minimum network data transfer.  

A. Detection and Estimation of Spatial Computations in 
Image Libraries 

Let us assume that there exists a function F in a black-box 
image processing library that creates an output image from 
an input image by deriving each output value at location 
𝑥⃗ ∈  ℤ𝐷 (𝐷 = 2,3, …) from a set of input image values that 
include the location 𝑥⃗. Fig. 2 shows an example of such an 
image library function that is denoted as a spatial image 
computation.  For simplicity, we will proceed with 𝐷 = 2. 

 
Fig. 2: An image library function is labeled as a spatial 

computation without or with overlap if it will compute one red 
pixel in output image from one or many pixels around the same 

location in input image. 

The problems of detecting spatial computation among image 
library functions and estimating its spatial extent are 
approached by (a) forming an objective function 𝑓  in 

equation (1) and (b) evaluating 𝑓  to find subsets of input 
pixels 𝐴(𝑥⃗) for which 𝑓 = 0. 

𝒇(𝐀(𝐱�⃗ ), 𝐈𝐈𝐍, 𝐅) =
∑ |  𝐂𝐑𝐎𝐏[𝐅(𝐈𝐈𝐍(𝐱�⃗ 𝐢))] −  𝐅[𝐂𝐑𝐎𝐏(𝐈𝐈𝐍(𝐱�⃗ 𝐢))]|𝐱�⃗ 𝐢∈𝐀(𝐱�⃗ )      (1) 

where 𝐼𝐼𝑁 is an input image modeled as a mapping 𝐼𝐼𝑁: 𝑥⃗ ∈
 ℤ𝐷 → 𝑦 ∈ ℤ; 𝐹: 𝐼𝐼𝑁(𝐴(𝑥⃗)) → 𝐼𝑂𝑈𝑇(𝑥⃗)  is a function in an 
image processing library, and CROP is an image sub-setting 
operation  𝐶𝑅𝑂𝑃: 𝐼𝐼𝑁(𝑥⃗𝑖 ∈  ℤ𝐷) → 𝐼𝐶𝑅𝑂𝑃(𝑥⃗𝑖 ∈ 𝐴(𝑥⃗))  ⊂ 𝐼𝐼𝑁 . 
For a given input image 𝐼𝐼𝑁  and a function 𝐹  with pre-set 
parameters, the objective function 𝑓  depends only on the 
parameters of 𝐴(𝑥⃗) . The parameters of 𝐴(𝑥⃗)  (i.e., input 
image region in TABLE 1) might vary or be constant with 
image location 𝑥⃗ as would be the case of a fixed size spatial 
kernel (𝐴(𝑥⃗) = 𝐴).  
  

 
Fig. 3. Overview of the algorithm for detecting spatial overlap and 

estimating spatial kernel. 

 Fig. 3 and the algorithmic pseudo-code below 
illustrate the computation of an objective function and the 
iterative nature of the search for parameters of 𝐴. 
Algorithm for detecting spatial overlap and estimating 
spatial rectangular kernel:  
Create a set of image areas of 𝐴 = 1𝑥1 size (area of one 

pixel). 
Compute 𝑓(𝐴, 𝐼𝐼𝑁, 𝐹) for all image areas in a set.  
if All values of 𝑓(𝐴, 𝐼𝐼𝑁, 𝐹) are zero then  
     the computation is spatially local without spatial     
      overlap and hence use logical partitioning without    
      overlap 
else Create a set of point-centered rectangular areas         
       𝑆𝑃𝐶 = {𝐴𝑖} around the image center pixel with varying  
       dimensions 𝐴𝑥 and 𝐴𝑦.   
       Compute  𝑓(𝐴𝑖 ∈ 𝑆𝑃𝐶, 𝐼𝐼𝑁, 𝐹) for all image areas  
       if There exists 𝑓(𝐴∗ ∈ 𝑆𝑃𝐶, 𝐼𝐼𝑁, 𝐹) = 0 then 
           the computation is spatially global with spatial  
           overlap and its rectangular kernel is 𝐴∗, thus, use  
           logical partitioning with overlap.   
      else The computation is not spatial and hence physical  
           partitioning can be directly applied. 



B. Image Partitioning Schema for Spatial Computations on 
Hadoop Platforms 

The information about spatial image computations can be 
utilized to address the problem of an optimal image 
partitioning schema on Hadoop cluster/cloud computing 
platforms with respect to minimum network data transfer. 
Image partitioning for parallel execution can be performed 
based on logical image regions rather than physical chunks 
of an image file. We illustrate the advantage of logical 
image partitioning in Fig. 4 where there is no need to 
exchange data between nodes during runtime. The goal is to 
co-localize an input image sub-region with the computation 
of the corresponding output value on each cluster node. 

 
Fig. 4: Examples of image partitioning for a spatial computation of 

an average of 3x3 image pixels with overlapping four image 
regions. The computation is illustrated for a single node, and two 

and four distributed computational nodes with no exchange of 
pixels between nodes during runtime. 

1) Mathematical Framework 
In order to evaluate the runtime benefits achieved by using 
logical partitions for spatial image computations as 
illustrated in Fig. 4, we focus on the speed-up of going from 
single processor desktop to a computer cluster with P 
processors. In general, the speed-up is defined as a ratio of 
the time using one processor and P processors according to 
equation (2). It can be viewed as a function of the number of 
processors or the problem/data size (strong versus weak 
scalability following Amdahl’s and Gustafson’s laws [19]).  

                         𝑆(𝑃) = 𝑇(1)
𝑇(𝑃)                                     (2) 

For computer clusters and cloud computing resources, the 
speed-up has dependencies on the number of nodes 𝑁, the 
node parameters 𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖)  such as the number of 
processors 𝑃𝑖  and the RAM size 𝑀𝑖 , the data parameters 
such as the total size of data 𝐷  and data partitioning  
𝐷𝑃𝑘 [type={physical, logical}, size= |𝐷𝑃𝑘|] packaged into 
blocks of size 𝐵 for distribution across 𝑁 cluster nodes, and 
the data transfer parameters 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎) of the network 
connecting the cluster nodes and the storage array with data. 

The parameter extension in equation (2) to more complex 
ones for a computer cluster is presented in equation (3). 
 
𝑆(𝑃) → 𝑆�𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖), 𝐷𝑎𝑡𝑎(𝐷, 𝐷𝑃𝑘, 𝐵), 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎)�; 
                              𝑃 = ∑ 𝑃𝑖𝑁

𝑖=1                             (3) 
 
For a specific case of a computer cluster running Apache 
Hadoop middleware to manage computations using 
MapReduce, one can expand equation (3) and the speed-up 
dependencies can then be expressed as shown in equation 
(4). 
 
𝑆 =

𝑇(𝑁 = 1,𝑁𝑜𝑑𝑒(𝑃𝑖 = 1,  𝑀𝑖),  𝐷𝑎𝑡𝑎(𝐷 ),𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))
𝑇(𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖),𝐷𝑎𝑡𝑎(𝐷,𝐷𝑃𝑘, 𝐵, 𝑅),𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))/𝐻𝑎𝑑𝑜𝑜𝑝 )

 

 
= [𝑇𝑁𝐸𝑇(𝐷) + 𝑇𝐼𝑂(𝐷) + 𝑛𝑘𝑥𝑇𝐶𝑃𝑈(𝐷𝑃𝑘)] / 

                          �
𝑇𝐻𝐷𝐹𝑆(𝐷, 𝑅) +

𝑇𝑀𝑎𝑝(𝐷𝑃𝑘) + 𝑇𝑅𝑒𝑑(𝐷𝑃𝑘)�                        (4) 

 
where in addition to the variables introduced in equation (3),  
𝑅  is the number of distributed image replicas, and  𝑛𝑘 is the 
number of jobs per image to complete. The numerator in 
equation (4) includes the time needed for an execution on a 
single node. It consists of the network transfer time 𝑇𝑁𝐸𝑇 to 
read and write the data between a user disk and his/her 
computational node,  𝑇𝐼𝑂 to load one input image and save the 
results, and the time 𝑇𝐶𝑃𝑈  to perform one of 𝑛𝑘 
computations operating on an input image sub-area 𝐷𝑃𝑘 . 
The denominator adds the times needed (a) to upload the 
input data to Hadoop Data File System (HDFS), replicate 
the data blocks across N cluster nodes and retrieve the 
results: 𝑇 𝐻𝐷𝐹𝑆 , (b) to perform Map tasks: 𝑇𝑀𝑎𝑝 , and (c) to 
shuffle values and reduce outputs to form a final result during 
Reduce phase: 𝑇𝑅𝑒𝑑. For illustration purposes, the parameters 
in equations (3) and (4) for the examples shown in Fig. 4 
would be: 𝑁=1, 2 or 4, 𝑁𝑜𝑑𝑒(𝑃𝑖 = 1,𝑀𝑖 > 𝐷) , 𝐷 = 4𝑥4 
pixels,  𝐷𝑃𝑘  = [type={logical}, size = 3x3 or 3x4 pixels], 
𝐵 >12 pixels, 𝑛𝑘 = 4 , 𝑅  =1, and  𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎)  are not 
specified. 
 Our logical partitioning schema focuses primarily 
on reducing the time for Map tasks that can be expressed in 
equation (5). 
 
𝑇𝑀𝑎𝑝(𝐷𝑃𝑘) = 𝑛𝑘

𝑃
𝑥 �𝑇𝐼𝑂(𝐷𝑃𝑘) + 𝑇𝑁2𝑁 �

1
𝑅

, 𝐷𝑃𝑘� + 𝑇𝐶𝑃𝑈(𝐷𝑃𝑘)� (5) 
 
where 𝑇𝐼𝑂  is the time to read and write data to and from 
RAM, 𝑇𝑁2𝑁  is the time to transfer the pixels that are not 
available at a compute node to complete a computation, and 
𝑇𝐶𝑃𝑈 is the time to perform computation. Our objective is to 
maximize the speed-up 𝑆  over physical and logical data 
partitions 𝐷𝑃𝑘  with and without overlapping pixels (denoted 
as ghost cells in [14]) by minimizing the communication 
time pertinent to input data transfers to HDFS ( 𝑇𝐻𝐷𝐹𝑆), and 
between the nodes to retrieve necessary data during the Map 



phase (𝑇𝑁2𝑁). Both objectives are presented in the equations 
below. 
 
max𝐷𝑃𝑘  𝑆((𝑁,𝑁𝑜𝑑𝑒(𝑃𝑖,𝑀𝑖), 𝐷𝑎𝑡𝑎(𝐷, 𝐷𝑃𝑘, 𝐵, 𝑅), 𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑃𝑎))/
𝐻𝑎𝑑𝑜𝑜𝑝 )                                                  (6) 

 

          min𝐷𝑃𝑘 �
𝑇𝐻𝐷𝐹𝑆(𝐷, 𝑅) +

  𝑛𝑘
𝑃
𝑥𝑇𝑁2𝑁 �

1
𝑅

, 𝐷𝑃𝑘�
�                                     (7) 

 
Note: The minimization problem can also be interpreted as 
an evaluation of input image partitioning schemas. The 
execution time on a single node assumes that the input 
image of width/height dimensions 𝑊𝐼𝑛𝑥𝐻𝐼𝑛  and the output 
image of size 𝑊𝑂𝑢𝑡𝑥𝐻𝑂𝑢𝑡  can be handled by its RAM 
(loading entire input image or image regions followed by 
processing).  
 

2) Image Partitioning Schema 
Given the objective functions in equations (6) or (7), we 
devised an image partitioning schema for logical partitions 
without or with overlapping pixels into a block size |𝐷𝑃𝑘| to 
be distributed across computer cluster nodes.  For logical 
partitioning with additional inputs (see Fig. 1) including a 
mask or a set of bounding boxes, we package pixels defined 
by a mask label or enclosed by a bounding box into one 
logical set 𝐷𝑃𝑘 .  This turns into a bin packing problem [20] 
where logical sets of pixels of different cardinality |𝐷𝑃𝑘| 
must be packed into a finite number of physical blocks 𝑁𝐵 
in a way that minimizes the number of blocks used. In 
general, an optimal number of blocks would be equal to the 
number of processors P.   
 Logical image partitioning for spatial kernel-based 
computations is designed with or without considerations of 
a kernel (sub-area) overlap for adjacent pixels (see Fig. 5). 
In order to obtain image regions 𝐷𝑃𝑘 containing a union of 
kernels for neighboring pixels: 
𝐷𝑃𝑘 = ∪ �𝐴�𝑥��⃗ 𝑗�, 𝐴�𝑥��⃗ 𝑗+1�, … � , we cut each image to the 
desired number of regions 𝑁𝐵  by 𝐷𝑥 and 𝐷𝑦  cuts along each 
input image dimension 𝑁𝐵  = (𝐷𝑥 + 1)𝑥(𝐷𝑦 + 1) . The 
blocks are either distributed directly to cluster nodes for 
logical partitions without overlap or are extended by the 
overlapping pixels for logical partitions with overlap as 
illustrated in Fig. 5.  The extension is performed by adding 
to each block  𝐾𝑥  number of input image columns and 𝐾𝑦 
number of rows where these two numbers correspond to the 
additional input pixels in each dimension that are needed to 
compute output values using the spatial kernel 𝐴�𝑥��⃗ 𝑗�.  

IV. EXPERIMENTAL RESULTS  
Experimental results follow the organization of Section III 
describing the two problems (detection/estimation of spatial 
computations, optimal image partitioning schema) with 
additional information about benchmark configurations for 
evaluating the image partitioning schema. 

 
Fig. 5: Image partitioning with and without overlap by horizontal 
and vertical cuts. This example shows an image partition to four 

blocks for a kernel size 3x3 (A(50) in yellow). The values of block  
𝑲𝒙 and 𝑲𝒚 are derived from unions of horizontal or vertical 

kernels of adjacent pixels. 

A. Benchmark Configurations  
1) Terabyte-sized Image Dataset  

We experimented with 161 images of the dimensions (width 
∈[22 881, 22 980]) x (height ∈[20 937, 21 123]), and 16 bits 
per pixel (about 1 GB per image). These images have been 
stitched from 127 512 files that represent 18 x 22 = 396 
fields of view (FOVs), 161 time points and 2 imaging 
channels. One FOV is about 2.8 MB. Each stitched image 
covers approximately 180 mm2 of a stem cell colony dish, 
over five days under both phase contrast and green 
fluorescence channels, with images acquired every 15 
minutes. The images are stored in a TIFF file format (143 
GB). Each frame has approximately 475 million pixels with 
2 bytes per pixel. For benchmarking and stress testing, we 
used 161 images from one channel.  

2) Hardware Platform  
We have executed all Hadoop cluster benchmarks on the 
NIST Raritan cluster with specifications provided in TABLE 
2. The cluster nodes had four processors (mostly Intel Xeon 
and Dual Core AMD) and 16 GB of RAM. We used the 
default Apache Hadoop configurations with 6 GB per Java 
process, the number of replicas R equal to two, and the 
block size B set to the 64 MB default size. 

 
TABLE 2: SPECIFICATIONS OF NIST RARITAN COMPUTER CLUSTER  

 Specs Cluster 

Hardware Cluster 
Nodes 

800 computer nodes having from 2 to 16 
logical cores with 4 to 32GB of RAM 

Networking 1Gbit/second  
Software Java 

Virtual 
Machine 

Java version "1.7.0_17" 
Java(TM) SE Runtime Environment (build 

1.7.0_17-b02) 
Java HotSpot(TM) 64-Bit Server VM (build 

23.7-b01, mixed mode) 



Hadoop hadoop-1.0.3.16 
Operating 

System 
CentOS 5.9 

Linux 2.6.18-274.3.1.el5 x86_64 
File System Lustre parallel distributed file system for 

/home and ext3 for the root used by HDFS 

B. Results From Detecting and Estimating Computations 
with Spatial Overlap 

We tested a set of image operations from Java Advanced 
Imaging (JAI) [6] and ImageJ [7] using synthetic images 
shown in Fig. 6. These synthetic images represent a wide 
variety of statistical spatial intensity arrangements for 
detecting local versus global properties. 

   
Fig. 6: Example synthetic images that represent randomness 

in intensity values (left), spatial gradient changes of 
intensity (middle), and checkerboard pattern of intensities 

(right). 
The set of image operations was selected from the following 
categories. 
-Unary and binary pixel operations that require only a single 
input pixel to compute one output pixel. Examples: addition, 
multiplication, absolute, and threshold. 
-Neighbor operations that require several pixels around a 
pixel in the input image to compute one output pixel. 
Examples: convolution, median filter, and morphological 
filters. 
-Other operations that do not fall into a class of spatial 
computations. Examples: rotation or image flipping along 
any axis. 
The test results are summarized in TABLE 3. All results 
matched the ground truth.  
 
TABLE 3: SUMMARY OF THE DETECTION AND ESTIMATION 
EXPERIMENTS  

Image operation Software 
package 

Category of 
image 

operation 

Recommended 
Image 

Partitioning  
Multiply by 

constant  
JAI, ImageJ unary  Logical without 

overlap 
Gradient 

magnitude  
JAI neighbor Logical with 3 x 3 

overlap 
Max Filter with 
variable mask 

JAI neighbor Logical with 
detected overlap 

Image convolution  JAI, ImageJ neighbor Logical with 
detected overlap 

AutoThreshold  ImageJ unary  Logical without 
overlap 

Morphological 
erosion  

ImageJ neighbor  Logical with 3 x 3 
overlap 

Median filter ImageJ neighbor Logical with 3 x 3 
overlap 

Flip horizontal ImageJ other Physical 

C. Runtime Results Using Image Partitioning Schemas 
Equation (7) can be evaluated experimentally over the types 
of image partitioning schemas and a range of image regions 
and kernels determining the size of 𝐷𝑃𝑘 [type ={physical, 
logical with overlap, logical without overlap}, size= |𝐷𝑃𝑘|]. 
Table 4 summarizes the parameters we have varied during 
experimental benchmarks. We documented the 
implementations of image partitioning schemas in C.1) and 
reported the experimental comparisons in C.2) using the 
configurations specified in Section A. 
 
TABLE 4: SUMMARY OF PARAMETERS VARIED DURING EXPERIMENTAL 
BENCHMARKS 

Parameters Values 
Number of cluster 

nodes N 
20,40,60,80,100,120 

Partitioning schema Physical (PB), Logical without (LB) and with 
overlap (LBO) 

Image region size  1 MB, 10 MB, 30 MB, 61 MB 
Number of Map tasks 1, 2, 6 

Kernel size 
𝐴 = 𝐴𝑥 ∗ 𝐴𝑦 

3x3, 25x25, 51x51, 75x75, 101x101 

Data size 40, 161 images (1 GB per image) 
 

1) Parallel Distributed Implementations  
We implemented the logical partitioning with and without 
overlap as an extension to the existing physical partitioning 
schema in Apache Hadoop following Section III.B.  During 
the push of an image into HDFS from a file storage system, 
the image is subdivided into regions with or without 
overlapping pixels. An image region is converted into an 
image record which is defined as a key/value pair. The key 
is generated from the file name of the whole image.  The 
value holds intensities of an image region with or without 
overlapping pixels, and the region position in the coordinate 
system of the input image. Multiple image records are 
stored using Hadoop Sequential File Format (i.e., 
SequenceFile objects) to avoid problem of many small files 
in Hadoop HDFS.  
 During the Hadoop Map phase, a spatial image 
computation is applied to every image record to generate an 
intermediate image record represented by a new key/value 
pair. During the Hadoop Reduce phase, values in 
intermediate records with the same key are shuffled and 
sorted among the worker nodes. The Reduce function 
retrieves computed output image pixels/regions from the 
same input image and produces the final output image using 
the information associated with image records.  
Table 5 provides details of Hadoop MapReduce 
implementations for the three image partitioning schemas 
including physical, logical without overlap, and logical with 
overlap.  
 
 



TABLE 5: SUMMARY OF HADOOP IMPLEMENTATIONS FOR THREE 
IMAGE PARTITIONING SCHEMAS INCLUDING PHYSICAL, LOGICAL 
WITHOUT OVERLAP, AND LOGICAL WITH OVERLAP 

Hadoop 
Implementation 

 Map Reduce 

logical image 
partitioning 

WITH overlap 

Input Image records 
(key/value pairs)  

and location of all 
image regions             

Key and list of 
values for each 

input image            

Output Image records 
(key/value pairs)               

One output image 
per input image  

Function image 
computation on 
image records 

Stitch all computed 
image records with 

the same key. 
Write output as a 

single image to 
HDFS 

logical image 
partitioning 
WITHOUT 

overlap 

Input Image records 
(key/value pairs) 

and location of all 
image regions 

Key and list of 
values for each 

input image            

Output Image records 
(key/value pairs)           

One output image 
per input image  

Function for each image 
record: 

-Retrieve image 
region position 

-Load all 
neighboring 

regions of the 
image record from 

HDFS 
-Form image 
regions with 

overlapping pixels 
along its borders 
-Execute image 

computation on a 
region and extract 
computed region 

without overlap as 
an output image 

record 

Stitch all computed 
image records with 

the same key. 
Write output as a 

single image to 
HDFS 

physical 
partitioning of 

NON SPLIT 
images 

Input Key: image 
number 

Value: entire 
image loaded 

from HDFS 

None 

Output Key: write 
computed entire 
image directly to 

HDFS        
Value: computed 

region 

None 

Function image 
computation on 

entire image 

None 

2) Experimental Comparisons of Logical and Physical 
Image Partitioning Schemas 
All experimental benchmarks are obtained using 
morphological dilation operation applied to the stem cell 
images described in Section A.1). Each compute node came 
with 4 processors and 16 GB RAM according to the cluster 

specifications in Section A.2). The physical partitioning 
schema used 64 MB block size for pushing the data to 
Hadoop HDFS. The block size for the two logical 
partitioning schemas varied according to Table 4.  

a) Strong and weak scaling 
We have varied the input image size and the number of 
nodes to benchmark the scaling performance according to 
weak and strong scaling assumptions [19]. Fig. 7 and Fig. 8  
show runtime dependency for morphological dilation with a 
kernel size A=101x101 on the number of cluster nodes for 
40 and 161 images and multiple partitioning configurations. 
The number of file replication R is two.  
 

 
Fig. 7: Runtime as a function of the number cluster nodes.  The 

logical partitioning with overlap (LBO) into 10MB image regions 
outperforms the physical partitioning (PB) for 161 images. 

Fig. 7 illustrates close to linear scaling for Hadoop logical 
partitioning with overlap (LBO) for up to 120 cluster nodes 
with the total of 480 processors. The average relative speed-
up of 5.36 is computed as the ratio of time averages over the 
collected data points using physical (PB) and logical 
partitioning with overlap (LBO) and 10 MB image regions. 
The difference in the runtimes is due to not only the logical 
partitioning but also the ability to run up to 6 Map tasks 
concurrently. In addition, the RAM requirement to 
computations using PB is 8 GB in comparison to less than 1 
GB using LBO.  
 Fig. 8 shows that the Hadoop physical partitioning 
(PB) configuration does not scale for the number of cluster 
nodes larger than 60. There are idle nodes and the cluster is 
unbalanced. The lack of scaling could also be due to the 
executions of duplicated tasks on big images for failed tasks 
and waiting for the execution of the last task. The scalability 
of the computation clearly benefits from splitting the big 
images into image regions in a distributed computer cluster 
environment.  
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Fig. 8: Runtime as a function of the number cluster nodes.  The 

logical partitioning with overlap (LBO) outperforms the physical 
partitioning (PB) for 40 images regardless of the image region size. 

b) Logical partitioning schemas  
We evaluated the runtime difference between logical 
partition with and without overlap as a function of the 
number of cluster nodes in Fig. 9. The benchmarks are 
collected for morphological dilation with a kernel size 
A=101x101 on varying number of cluster nodes. The logical 
partitioning size of an image region was fixed to 10 MB and 
six Map tasks were executed on each node. One can 
compute a runtime speed-up as a ratio of logical partitioning 
with overlap over without overlap from the data shown in 
Fig. 9. The average speed-up over varying number of cluster 
nodes is 3.14 (minimum=2.2 and maximum=5.4). We have 
also analyzed percentages of data local tasks for the 40 
processed images based on log files. The difference in 
percentages ranges between 15 and 65 (LBO, 1 MB versus 
PB) and corresponds to the extra time spent on node to node 
data transfer 𝑇𝑁2𝑁.  
  

  
Fig. 9: Comparison of runtimes using logical partitioning with and 

without overlap. 

In addition, we explored the dependency of runtime on the 
kernel size of an image morphological dilation.  Fig. 10 
shows the benchmarks for a configuration processing 40 
image files on 40 cluster nodes and a fixed image region 

size of 10 MB and 2 Map tasks per node. We concluded that 
LBO always has lower runtime. The runtime difference is 
almost constant with the kernel size due to the transfer time 
needed by LB to bring a whole data block containing the 
missing pixels to the compute node.   

 

 
Fig. 10: Runtime dependency on the size of a morphological 

dilation kernel for the two logical partitioning schemas with and 
without overlap. The benchmarks are collected using 40 cluster 

nodes, 10 MB image regions and 2 Map tasks. 

V. SUMMARY 
We have analyzed a class of spatial image computations 
applied to terabyte-sized images and executed on a Hadoop 
computer cluster platform. We addressed two problems that 
would lower the barrier for bench scientists to process large 
size images by (a) detecting spatial image computations in a 
library of image processing functions, and (b) partitioning 
image data for spatial image computations on Hadoop 
cluster/cloud computing platforms in order to minimize 
network data transfer. Our theoretical framework focused on 
formulating both problems as estimation problems, and 
evaluating various image partitioning configurations. The 
experimental part documented accuracy and runtime 
performance of multiple image partitioning schemas for 
morphological dilation used as an example of a spatial 
image processing operation. The results for the detection 
problem demonstrated 100% accuracy in detecting spatial 
computations. The results with various image partitioning 
schemas yielded a significant speed-up (5.36 and 3.14) of 
the computations on Hadoop clusters when comparing 
physical or logical partitioning without overlap and logical 
partitioning with overlap.  
 In the near future, we plan to benchmark other 
image processing computations and disseminate the Hadoop 
extension to the image processing community. Overall, 
there are still unanswered questions about the distribution of 
image data access (uniform or skewed), temporal locality in 
data access, and how much of multi-dimensional image data 
is collocated when being accessed. In order to understand 
the relationship between data parallelism and computational 
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efficiency, one has to examine specific degrees of 
dependency among data points and data access patterns for 
each class of image processing computations.  
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