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ABSTRACT 
This paper addresses the problem of mapping 
application specific requirements on image similarity 
metrics to the plethora of existing image similarity 
computations. The work is motivated by the fact that 
there is no method for choosing a similarity metric that 
is suitable for a given application. We approached the 
problem by designing a theoretical and experimental 
framework for creating sensitivity signatures of 
similarity metrics. In this paper, we outline the 
classifications of image similarity metrics found in the 
literature, the space of application parameters and 
requirements, derivations of similarity dependencies on 
application parameters, and experimentally obtained 
sensitivity signatures of similarity metrics using image 
simulations. These sensitivity signatures provide a way 
for users to query a reference database of sensitivity 
signatures and retrieve a recommendation for an image 
similarity metric. We illustrate the use of the prototype 
recommendation system by considering spectral 
calibration and spatial registration application 
requirements. 
KEY WORDS 
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1 Introduction  

Many conclusions in the biomedical field are based on 
comparing measured and reference observations. One of 
the fundamental components of these comparisons is a 
measure of similarity. Visual inspection and the human 
perception of similarity play a prominent role in 
biomedical research. However, advances in imaging 
and the corresponding growth of image data lead to an 
increasingly high demand for the automation of visual 
comparisons and for a transition from expert-applied 
image similarity to computer-applied image similarity. 
The overwhelming data volumes represent our major 
motivation for the automation of visual comparisons 
and for building reference implementations of measures 
of image similarity.  

The goal of this work is to address the mapping 
between application specific requirements on image 
similarity metrics and the plethora of existing image 
similarity computations. Our objective is to provide 
support for finding similarity metrics that closely match 
application requirements on image comparisons. In 
order to achieve the goal, several challenges need to be 

addressed: (1) organize image similarity metrics 
according to various application criteria, (2) model the 
functional dependencies of image similarity measures in 
a large space of application parameters and 
requirements, (3) develop signatures of similarity 
metrics that can be matched against user’s inputs, and 
(4) prototype a recommendation framework for 
similarity metric selection. 

To address such a wide spectrum of challenges, we 
leverage several existing surveys of image similarities 
[1–9]. The surveys allow us to introduce a tree-based 
taxonomy of similarity measures. Furthermore, in order 
to manage the large number of existing image similarity 
metrics, we narrow down our metric implementations 
and experimental studies on labeled images and single 
band grayscale images. These particular sub-categories 
of images are aligned with our primary interest in using 
similarity metrics for evaluating reference-based image 
quality, accuracy, and consistency of microscopy image 
segmentation results, and accuracy and robustness of 
tracking and registration computations in cell biology.  

Our main approach toward a recommendation 
system for choosing image similarity metrics consists of 
(1) consolidating classifications of image similarity 
metrics found in the literature, (2) identifying and 
simulating the space of application parameters and 
requirements, (3) deriving similarity dependencies on 
application parameters from synthetic images to create 
sensitivity signatures of similarity metrics, and (4) 
prototyping a recommendation framework for similarity 
metric selection.  

Our unique contribution lies in a theoretical and 
experimental data driven characterization of similarity 
metrics that maps to application specific requirements 
on image similarity metrics. This initial work provides 
an opportunity for building a fully developed reference 
database of sensitivity signatures of similarity metrics, 
for providing selection recommendations of similarity 
metrics driven by application specific requirements, and 
for eventually delivering web-based image comparison 
services. 

2 Previous Work on Image Similarity  

Past work on image similarity metrics [1–9] focused 
primarily on similarity computations that are based on 
(1) binary image overlap, (2) image object geometry, 
(3) color vectors, (4) histograms of intensity, or (5) 
texture. The overlap and object geometry based 



similarity computations are frequently researched in 
segmentation papers [10–15]. For example, Zhang et al. 
[12] focused on unsupervised segmentation methods 
that depend on the choice of similarity metrics. The 
similarity metrics are classified according to 
segmentation use as intra-region, inter-region and 
composite pixel comparisons, and include 
considerations of texture, entropy and various color 
descriptors. Cha [16] surveyed extensively histogram-
based similarity metrics. Others, e.g. Sampat et al. [7], 
surveyed similarity metrics based on multiple image 
characteristics including intensity, overlap of binary 
images, and image object geometry. Given the difficulty 
of defining texture, studies of similarity metrics 
involving texture descriptors have always been of 
interest to segmentation and content-based retrieval 
applications [9], [17]. Many 2D image similarity 
metrics are also frequently used in studying 3D images 
(see Benhabiles [18]). Some papers not only state 
mathematical definitions of image similarities but also 
attempt to relate mathematical definitions of similarity 
metrics with various visual perception criteria [1], [7], 
[8], [10]. These studies are driven by the need to 
automate visual inspections and hence replicate human 
perception of image similarity.  

The literature survey indicates a lack of a 
comprehensive classification of similarity 
computations. Furthermore, there is a lack of 
understanding on how to map application requirements 
to specific computations of similarity metrics. While 
there are many papers proposing new similarity metrics 
[7], [8], [13], the lack of a recommendation system for 
choosing a similarity metric according to application 
specific requirements motivates our work. 

3 Approach 

To address the aforementioned problems, we first 
classified similarity metrics in Table 1 based on the 
main image similarity applications and their 
requirements. The requirements are organized in terms 
of desirable invariance and sensitivity properties to 
image acquisition variables and any changes in an 
imaged field of view. A user specifies the sensitivity of 
a subset of high level variables in Table 1 as inputs to 
search for a similarity computation matching the 
application requirements. 
 
3.1 A Modeling Framework 

 
In order to match user’s inputs, we created a modeling 
framework consisting of three sample spaces as shown 
in Figure 1. The original image content space ሼܫ௜,௝

ோ௘௙ሽ 
consists of any reference images that can be obtained by 
simulations or by controlled experiments. The reference 
images are represented by a variable number of bits per 
pixel, number of pixels, and number of image 
bands/channels. The index i refers to an image content 
generating function (e.g., random number generators, 

rule-based generators, or experimental settings), and j is 
the parameter of the generating function (e.g., 
probability distribution parameters, camera aperture 
values). In general, experiments are characterized by 
varying illumination, imaging parameters or object 
properties, while simulations are based on developing 
deterministic and statistical generative models.  

 
Table 1:  Sensitivity and invariance of similarity 

metrics to image acquisition variables and content 
changes 

Application vs. 
Requirements 

Sensitivity Invariance 

Image Spectral 
Calibration  

Intensity 
changes 

Translation, 
rotation, scale, 
skew, 
symmetry 

Image Spatial 
Registration  

Translation, 
rotation, scale, 
skew, symmetry 

Intensity and 
shape changes 

Image 
Segmentation  

Contour 
changes, pixel 
level region 
overlaps 

Intensity 
changes 

Content-Based 
Image  Retrieval 

Coarse intensity 
and shape 
changes 

Translation, 
rotation, scale, 
fine intensity 
and shape 
changes 

Image 
Compression  

Coarse 
perceptual 
changes 

Fine perceptual 
changes 

Object 
Recognition (e.g., 
navigation,  
security ) 

Salient image 
object 
characteristics  

Translation, 
rotation, scale, 
skew 

 
Next, the modified image content space ሼܫ௜,௝,௠,௡

ெ௢ௗ ሽ 
represents all possible operations and their parameters 
applied to a reference image. In the above notation, i 
and j refer to a reference image, and m and n refer to the 
selection of a modifying operation and its parameters 
applied to the reference image. The entries in Table 1 
correspond to operations modifying image content, and 
can be mapped to classes of image acquisition variables 
and to physical changes in an imaged field of view. 
Both are modeled by the operations applied to a 
reference image. We consider operations that lead to 
image content changes in terms of position, intensity, 
shape, and texture of an object of interest.  

The comparison space of image contents 
ሼܿ௞ሺܫ௜,௝

ோ௘௙, ௜,௝,௠,௡ܫ
ெ௢ௗ ሻሽ is the space of all similarity 

computations indexed by k operating on the reference 
and modified images. It consists of 2D image 
adapters/loaders, extractors of image descriptors and 
similarity measures applied to image descriptors. The 
similarity function ܿ௞: ܴଶ ൈ ܴଶ ՜ ܴ yields a pair-wise 
similarity/proximity value that is typically from one of 



the three sub-intervals of R: ሾ0,1ሿ, ሾെ1, െ1ሿ, or ሾ0, ∞ሻ. 
The space of software adapters, extractors and measure 
computations has its associated set of data containers 
for loaded data, image descriptors and 
similarity/proximity measure values, and is very large. 
This similarity computation-based organization allows 
us to include any existing similarity metric described in 
the previous surveys into a software framework and 
classify it based on its triplet (image loader/adapter, 
image content descriptor, similarity measure).  

 

 
Figure 1: Overview of the modeling framework. 

 
Finally, the sensitivity ݏԦ௞ of a pair-wise image 

similarity is defined as the rate of change over a set of 

reference and modified images: ݏԦ௞ ൌ  ሺ ఋ௖ೖ

ఋூ೔,ೕ
ೃ೐೑ , ఋ௖ೖ

ఋூ೔,ೕ,೘,೙
ಾ೚೏ ሻ, 

where the symbol ߜ refers to a functional derivative. In 
order to compute the sensitivity ݏԦ௞ analytically, one has 
to establish functional dependencies between the 
reference image generating variables and the reference 
image, as well as between the variables causing 
modifications to a reference image and the modified 
image, and then solve the functional derivatives. In 
practice, these functional dependencies cannot become 
users’ application specific inputs since they are 
unknown. This problem is also computationally 
intractable because of the size of each considered space. 
The original image content space contains the number 

of 2D reference image instances: J ൌ 2#
್೔೟ೞ

೛೔ೣ೐೗
 ൈ #௣௜௫௘௟௦

, 
where the number of bits represents all bits assigned to 
one or many image bands. The modified image content 
space has ܯ ൈ ܰ number of operations (M) and 
parameters (N), and the comparison space of image 
contents is composed of ܭ ൑ 1ܭ ൈ 2ܭ ൈ  triples of 3ܭ
adapters (K1), image descriptors (K2), and similarity 
measures (K3).  

We approach the problem by approximating the 
two differentials with two matrices shown in Equations 
(1) and (2). The equations assume that there exist 
classes of image content generative functions ݄ and of 
image content modifying functions ݃ that are 
characterized by operators denoted with indices i and m, 

and their respective parameters labeled as ௝ܾ
௜ and ܽ௡

௠. 
Both equations are approximations because the classes 
of functions and their parameters are represented only 
by their samples with a size equal to the number of rows 
and columns of each matrix. The symbol ߜ߶ሾܿ௞ሾሺ , ሻ; . ሿ 
represents the Frechet derivative of ܿ௞(,) with respect to 

௝ܾ
௜ or ܽ௡

௠ parameters [19]. Thus, the two equations (1) 
and (2) yield two matrices of sizes max ሺ݅ሻ ൈ max ሺ݆ሻ 
and max ሺ݉ሻ ൈ max ሺ݊ሻ, where each matrix entry is a 
function representing the derivative of a similarity 
metric functional dependency on (a) the parameter b of 
the image generating function ݄ or (b) the parameter a 
of the image modifying function ݃. These two matrices 
represent a sensitivity signature of each similarity 
metric that can be matched against the users’ sensitivity 
requirements.  
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From a practical perspective, end users may find 

specifying functional dependencies too complex. In 
order to simplify the format of user’s inputs (values 
instead of curves), we bin the range of each parameter 
into three sub-ranges: Low, Medium and High values of 
parameters a or b. Furthermore, we compute the 
average value of each matrix entry over a sub-range of 
parameters and bin the average values into B categories 
corresponding to a range of low to high sensitivity.  
Finally, in order to make the user interface for entering 
similarity metric requirements easier visually, we re-
arrange the two matrices into three columns 
corresponding to the Low, Medium and High values of 
parameter ranges, and into max ሺ݅ሻ ൈ max ሺ݆ሻ or 
max ሺ݉ሻ ൈ max ሺ݊ሻ rows following the zig zag scan of 
the original matrices, as used in image processing. The 
presentation format of the sensitivity signature of 
similarity metrics is illustrated in Eq. (3) for the second 
matrix and denoted as ܵ௞ଶ

஻ூே . These simplifications 
make entering categories rather than curves more user-
friendly for end users. They also make visual 
comparison of the signatures straight forward. 
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4 Experimental Results 

4.1 Creating Sensitivity Signatures of 
Similarity Metrics 

 
We illustrate the process of creating sensitivity 
signatures of similarity metrics by focusing on the 
matrix ܵ௞ଶ  in Eq. (2). First, the process consists of 
selecting m=4 operators from the modified image 
content space (see Figure 1) and n=2 parameters per 
operator.  The choice of operators and parameters is 
summarized in Table 2. Each parameter was sampled 
over its specific range of values, and the number of 
samples per parameter varied between 11 and 45. This 
selection defines the size of the matrix ܵ௞ଶ to be 4 ൈ 2.  
Following Eq. (3), we also created signatures with 
binned parameter ranges (Low, Medium, High) that 
equally divide the min and max value interval of a 
parameter. Finally, we chose to classify the averages of 
the 1st order derivatives over each sub-range into 9 bins 
which led to a matrix ܵ௞ଶ

஻ூே per similarity metric of size 
8 ൈ 3 (4 operators ൈ 2 parameters ൈ 3 bins – see Table 
4). 

Next, we sampled the comparison space of image 
contents by choosing ݇ ൌ 9 similarity metrics. These 
similarity metrics belong to a class of (a) overlap-based 
metrics (Dice and Jaccard [7]), (b) clustering-based 
metrics (Rand Index and Adjusted Rand Index [8], 
[20]), and (c) histogram-based metrics (Euclidean, City 
Block, Chebyshev, Intersection and Divergence [16]).   

 

4.2 Computing Sensitivity Signatures of 
Image Similarity Metrics 

 
Table 3 shows an example of the sensitivity analyses of 
the histogram-based Euclidean metric for eight 
combinations of operators and their parameters. The 
columns refer to metric dependency ܿ௞ and its 1st 
difference in the discrete case. The difference is 
computed by taking the absolute value of the similarity 
value for the two identical images without 
transformation subtracted from the similarity value for 
the two images, one without and one with the 
transformation applied to it. The graphs in the last 
column of Table 3 are binned along the x- and y-axes, 

and then presented as a matrix (a sensitivity signature of 
a similarity metric) following Eq. (3). 

 
Table 2: Samples of operators and parameters from 
the modified image content space. The number in 
parenthesis refers to the number of image samples 

used for each parameter 

Operator Parameter n=1 Parameter n=2
Position 
m=1 

Translation Change:  
ܽଵ

ଵ  (21) 

 

Rotation Change:  
ܽଶ

ଵ  (45) 

Shape 
m=2 

Size/scale Change:  
ܽଵ

ଶ  (18) 

 

Ellipticity Change:  
ܽଶ

ଶ (16) 

 
Intensity 
m=3 

Gamma Correction:  
ܽଵ

ଷ (11) 
Blur Level Change:  
ܽଶ

ଷ  (15) 

Texture 
m=4 

Granularity Change:  
ܽଵ

ସ (26) 

 

Orientation Change:  
ܽଶ

ସ  (19) 

 
 
Table 4 consists of color-coded matrices described 

by Eq. (3) for each metric listed in the previous section. 
The color code legend is presented in Table 4, and the 
white color was introduced to refer to a non-valid 
computation with respect to the operator ݃௠.  

 
4.3 Examples of Application-Driven 

Similarity Metric Recommendation 
 

Table 4 shows that similarity metrics have various 
overall sensitivities to image content changes (i.e., the 
distribution of blue to red colors in each signature 
matrix). We illustrate how the application specific 
requirements in Table 1 are converted into a query 
presented to the recommendation system and how the 
recommendation of a similarity metric is computed.  
Table 5 and Table 6 present simple color-encoded 
queries of the application specific requirements for 
image spectral calibration and image spatial registration 
applications (see Table 1).  
 
 
 
 
 
 
 
 



Table 3: Sensitivity analysis of the Euclidean similarity 
metric [16]   

Operator   
݃௠ : 
Parameter  
ܽ௡

௠ 
 

Similarity metric 
dependency  ܿ௞ 

1st difference of 
similarity metric 
dependency  

Position : 
Translation 
of circle in 
x direction  
   

cଵሺ  , gଵሺ , ܽଵ
ଵሻሻ 

 

Position: 
Rotation 
angle of 
lines 
 

cଵሺ  , gଵሺ , ܽଶ
ଵሻሻ 

 

Shape: 
Size/scale 
represented 
by circle 
radius  
 cଵሺ  , gଶሺ , ܽଵ

ଶሻሻ 
 

Shape: 
Ellipticity 
represented 
by flatness 
of ellipsoid 

cଵሺ  , gଶሺ , ܽଶ
ଶሻሻ 

 

Intensity: 
Gamma 
correction 
 

cଵሺ , gଷሺ , ܽଵ
ଷሻሻ 

 

Intensity: 
Blur level 
represented 
by kernel 
size  
 cଵሺ  , gଷሺ , ܽଶ

ଷሻሻ 

 

Texture: 
Granularity 
represented 
by checker 
size 

cଵሺ  , gସሺ , ܽଵ
ସሻሻ 

 

Texture: 
Orientation 
angle of 
line 
segments 
 cଵሺ  , gସሺ , ܽଶ

ସሻሻ 

 

 

Table 4: Sensitivity signatures of nine similarity 
metrics with the legend of the color codes following 
the blue to red schema (low to high sensitivity).  
White refers to the cases where similarity metrics 

could not be applied 

Metric 
Sensitivity 
signature 

Metric 
Sensitivity 
signature 

Dice City_block 

Jaccard Chebyshev 

 

Adjusted 
Rand 
Index  

Intersectio
n 

Rand 
Index 

Divergence 

 

Euclidia
n 

 

Color 
Legend 

 
The query in Table 5 describes a desirable metric 

that would be highly sensitive to intensity changes but 
not sensitive to position, shape and texture changes. 
Table 6 contains a query to find a metric that is highly 
sensitive to translation, rotation and scale but not 
sensitive to intensity, texture, and shape ellipticity 
changes. 

The color-coded query is a 8 ൈ 3 matrix that can be 
populated by a user. The matrix entries can be specified 
as angles in degrees of the first difference (i.e., the slope 
of a line defined by the similarity value for the two 
identical images without transformation and the 
similarity value for the two images, one without and 
one with the transformation applied to it).  The matrix 
entries in degrees are binned into nine uniformly 
distributed bins of widths 10 degrees. The binning 
procedure for the color-coded query is illustrated in Eq. 
(4).  

In order to find the best match to the query, we 
compute first the Euclidian distance between each row 
of the binned input query matrix and each row of all 
binned sensitivity matrices in our database of sensitivity 
signatures. Next, we compute the average Euclidean 
distance over all rows with a valid entry (i.e., color-
coded values different from white). Eq. (5) describes 
the distance computation. Finally, we recommend the 
similarity metric in the database with the smallest 
average distance to the user specified query, i.e., 



min୩ ሼ݀௞ሽ . The results can be visually verified in Table 
5 and Table 6 (right columns). 
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Table 5: An example of a user defined query for the 
spectral calibration application requirements and its 
recommended similarity metric. The colors follow the 
color coding shown in Table 4 (red is high sensitivity 

[80‐90[; blue refers to low sensitivity [0‐10[) 

Application Change Operation User Query Recommended
Similarity 
Metric: 
Divergence 

Spectral 
Calibration  

Position Translation 

Rotation 

Shape Size 

Ellipticity 

IntensityGamma 

Blur 

Texture Granularity 

Orientation 

 

5 Conclusion 

We described the methodology for building signatures 
of image similarity metrics that can aid end users in 
choosing similarity metrics according to their 
application specific requirements. The contribution of 
this work is in designing these sensitivity signatures. 
We are developing a large reference database of 
sensitivity signatures of similarity metrics, and plan to 
conduct a large scale experiment to validate any 
recommended similarity metric. 

Table 6: An example of a user defined query for the 
spatial registration application requirements and its 
recommended similarity metric. The colors follow the 
color coding shown in Table 4 (red is high sensitivity 

[80‐90[; blue refers to low sensitivity [0‐10[) 

Application Change Operation User Query Recommended 
Similarity 
Metric: 
Divergence 

Spatial 
Registration

Position Translation 

Rotation 

Shape Size 

Ellipticity 

IntensityGamma 

Blur 

Texture Granularity

Orientation 

 
 

Disclaimer  

No approval or endorsement of any commercial product 
by NIST is intended or implied. Certain commercial 
software, products, and systems are identified in this 
report to facilitate better understanding. Such 
identification does not imply recommendations or 
endorsement by NIST nor does it imply that the 
software and products identified are necessarily the best 
available for the purpose. 
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