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ABSTRACT 

This paper addresses the problem of automating an image ranking 

process for stem cell colonies. We automate the manual process in 

a novel way: instead of fitting off-the-shelf image features and 

colony ranks to prediction models, we define a new feature set 

that uniquely characterizes the visual clues from images of the 

colonies and biological rules experts use to rank colonies from 

image data. Our automation considers several factors: the 

inconsistency of manually assigned stem cell colony ranks, the 

type of image segmentation to detect stem cell colonies (manual 

and automated), the type of image feature set (off-the-shelf vs. 

custom designed), and an underlying relationship between input 

colony features and output stem cell colony ranks (linear and non-

linear). The novelty of our work lies in automating stem cell 

colony ranking while preserving the connection between visually 

perceived quality characteristics of stem cell colonies, and image 

colony features combined with a computational prediction model. 

The main contribution of our work is in demonstrating the 

benefits of direct interpretation of biological rules to automation 

of stem cell colony ranking. We also outline a method for 

establishing relationships between the commonly used Haralick 

features and our custom-designed features. 
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1 Introduction 

Maintaining stem cell lines currently requires manual selection of 

colonies for passage based on inspection under the microscope. 

Even when expert biologists have defined and agreed upon a set 

of biological rules to rank stem cell quality, the selection process 

is inconsistent. One approach to increasing consistency is via 

computer-based automation. Automation is typically achieved by 

(1) adapting off-the-shelf image feature software, (2) building and 

validating a model to predict colony ranks from image features, 

and (3) predicting ranks from image feature measurements during 

the actual ranking process.  

 There are several drawbacks to such an approach. The 

typical approach does not specifically include features that experts 

look for in high quality colonies. Furthermore, there is no visual 

connection between off-the-shelf image features and stem cell 

quality. Without a biological connection between specific features 

and specific image characteristics, it is not possible to understand 

if the feature set has been fully defined. Additionally, off-the-shelf 

features may contain extraneous features that are included in 

complex prediction models (e.g., random forests and decision tree 

models), which may affect the outcome of such models and the 

accuracy of automated colony rank prediction.  

 

 

Figure 1: Overview of manual versus automated assignment of 

ranking labels.  

 

Our motivation is to build a feature set that completely 

describes all characteristics of the pluripotency captured by 

experts in a set of biological rules. We assume that the biological 

rules are quantifiable in an image, and that they lead to a set of 

only relevant features. Our approach to defining a feature set to 

automate colony ranking addresses several of the drawbacks 

 

 

 



mentioned above, and is illustrated in Figure 1. It shows the flow 

of computational steps in our automated process (bottom of 

Figure 1) that replace the manual steps (top of Figure 1).  

The input for developing our automated process includes five 

biological rules (see Table 2) and 481 phase contrast images of 

stem cell colonies imaged at 10X magnification and ranked by 

two experts. The five bio-rules were broken down and mapped 

into 16 image features extracted over image segments obtained via 

automated segmentation. For comparison to more traditional 

methods of automation, a second set of 45 off-the-shelf features 

were used: 12 Haralick features, 30 wavelet features [1], area, 

perimeter, and circularity.  Both feature sets served as input to a 

linear (logistic LASSO) and two non-linear (decision tree and 

random forest) models. All models were validated by a leave-one-

out resampling technique.  Table 1 summarizes all variables 

considered for evaluating a computational model for predicting 

stem cell colony ranks. 

Table 1: A summary of variables for evaluating a 

computational model for predicting stem cell colony ranks.  

Experts’ 

Ranks 

Image 

Segmentation 

Image 

Features 

Prediction 

Model 

Consistent 

383 out of 

481 

Manual Off-the-shelf 

12 Haralick 

features,  

30 wavelet 

features 

Linear 

Logistic 

LASSO (least 

absolute 

shrinkage and 

selection 

operator) 

Inconsistent 

98 out of 

481 

Automated Derived from 

biological 

rules 

16 custom 

features 

Non-linear 

Decision tree 

Random 

forests 

 

Our objectives are to (a) incorporate bio-rules and experts’ ranks 

into a computational prediction model, (b) compare the accuracy 

of a prediction model for off-the-shelf image features in linear and 

non-linear prediction models against the accuracy of features 

based on bio-rules in a prediction model, and (c) explore relations 

between custom-designed and off-the-shelf features. The novelty 

of our work lies in automating stem cell colony ranking while 

preserving the connection between visually perceived 

characteristics of stem cell colonies with a computational 

prediction model. This is achieved by directly translating 

biological rules to computational image features and a prediction 

model.  

2 Input Data 

Phase contrast images of stem cell colonies were acquired at 10X 

magnification 24 hours after seeding. The images were provided 

to us from the Lieber Institute for Brain Development together 

with ranks of 481 stem cell colonies assigned by two experts and 

five biological rules that were established before ranking.  The 

biological rules were a summary of the experts’ ranking decision 

process. Rankings were divided by us into a Low pluripotency 

group (Low refers to 1,2 and 3 assigned by experts) and a High 

pluripotency group (High refers to 4  and 5 assigned by experts). 

Figure 2 shows examples of stem cell colonies in the Low and 

High groups, as well as the 1 to 5 ranks assigned by experts. Table 

2 presents the five biological rules and pluripotency group labels 

assigned according to each rule. 

 

 

Figure 2: Examples of stem cell colony images: top: ranks 

1,2,3 (Low); bottom: ranks 4,5 (High).  

3 Previous Work 

The closest previous work on predicting stem cell colony growth 

by image processing and pattern analyses have been reported in 

[2], [3], [4]. Bradhurst in his Master’s thesis [2] reports 44 

previously unseen images of bone marrow stem cell colonies that 

are classified with 88 % accuracy in comparison to 72 % accuracy 

of manual classification. The key emphasis is on normalization 

and colony segmentation. Jeffreys in his Master’s thesis [3] 

focused on image texture features to discriminate between 

differentiated and undifferentiated stem cells while using a 

support vector machine prediction model and Kullback-Leibler 

distance [4]. The texture features are selected to satisfy three 

criteria: textural homogeneity, textural tightness, and border 

sharpness and circularity. 

Table 2:  Biological rules 

IF <condition is met> THEN 

<rank> 

THEN 

<pluripotency 

group > 

(a) distinct margins, homogeneous 

phase-bright internal cells, small 

inter-nuclear distance, epithelial 

characteristics (elongated cells 

throughout) (b) distinct margins, 

homogeneous phase-bright internal 

cells, small inter-nuclear distance, 

epithelial characteristics at edge only 

5 High 

Intermediate 4 High 

distinct margins, heterogeneous 

phase bright/phase dark cells,  

variable inter-nuclear distance 

3 Low 

Intermediate 2 Low 

fully differentiated, indistinct 

margins, heterogeneous internal cell 

types, large inter-nuclear distance 

1 Low 



In comparison to the previous work, we focus more on the 

selection of the individual features of our feature set for 

characterization of the colonies including automated colony 

segmentation. The overall challenges in automating the process of 

stem cell colony ranking (classification) lie in modeling 

inconsistent ranks assigned by experts, segmenting colonies from 

images, and selecting features and prediction models optimally. 

We briefly describe related work for each challenging problem. 

3.1 Modeling inconsistent ranks of stem cell 

colonies 

Inconsistent ranks, diagnoses and expert’s interpretations occur 

often during examinations of medical records and medical images 

[5]. One approach to modeling the inconsistencies is to view the 

ranks as a random variable. In our case, the five ranks were 

converted into two pluripotency groups that enable us to describe 

the inconsistency with a binomial distribution. Let Yij be 1 

(pluripotent) if expert j assigned a score of 4 or 5 to image i and 

let Yij be 0 (not pluripotent) if expert j assigned a score of 1, 2 or 

3. We assume that for colony image i, the proportion of experts 

that would declare the imaged colony pluripotent is pi.  Expert 

scores are assumed to be independent from one another, 

conditional on the colony specific pluripotency proportion. That 

is, we assume Yij ~Binomial(n=1, pi) where n=1 refers to the 

number of agreeing pluripotency labels among N trials.  We seek 

to model the proportions pi as a function of features computed 

from colony image i. 

3.2 Segmentation 

The input images of stem cell colonies are difficult to segment due 

to surrounding epithelial feeder cells in the growth medium. Many 

different approaches were tried using ImageJ open source 

software utilizing routines for gradient edge detection, Gaussian 

blurring kernels to remove the feeder cells, and thresholding [6]. 

The most successful of all ImageJ routines found the colony 

boundaries but could not separate touching colonies. Areas of 

cells inside of a colony that were visually very distinct from the 

rest of the colony were also hard to capture (see for example, the 

rank 1 colony in Figure 2). We evaluated multiple methods 

against manual segmentation. Due to unsatisfactory accuracy of 

existing methods we decided to develop a custom segmentation 

technique. 

3.3 Feature selection 

Several surveys have been written on feature selection either 

focusing on the algorithmic aspects [7], [8], [9] or bio-domain 

specific aspects [10]. Previous feature selection methods can be 

categorized as supervised or unsupervised. The  types of feature 

selection algorithms can be classified as those using an initial 

feature filter, or those using machine learning to select a subset of 

relevant features [7]. The key challenges in a feature selection 

problem are (a) in searching a large space of features (2n where n 

is the number of features [11]), (b) in coping with feature 

dependencies and degrees of relevancy (relevant, irrelevant, 

redundant, and noisy features [12]), and (c) in having sufficient 

and realistic reference data to evaluate algorithmic performance 

(measured or synthetic data [13]). In our work, we approached the 

feature selection problem by translating biological rules into 

computational image features. Although this translation can be 

viewed as a one-to-many mapping, it reduces the feature search 

space significantly while preserving the connection between 

visually perceived quality characteristics of stem cell colonies in 

biological rules and image colony features combined with a 

computational prediction model. 

4 Modeling Manual Stem Cell Colony 

Ranking Process 

4.1 Translating Biological Rules 

The five bio-rules in Table 2 were broken down and mapped into 

16 computational image features. Our work in translating these 

five bio-rules into image features involves three steps:  

(1) image segmentation of stem cell colonies into regions of 

interests,  

(2) word-for-word translation of the attributes found in 

biological rules (in an IF x THEN y format) into image 

characteristics, and  

(3) identification of computational operations that quantify 

image characteristics.  

Table 3:  Translation of attributes into regions of interests 

(R1,R2,R3), image characteristics, and computational features.  

Attributes of 

the IF-THEN 

biological 

rules 

Region 

of 

Interest 

Image 

Characteristics 

to Measure 

Quantitative 

Computational 

Feature 

Distinct 

margins at 

colony border 

border 

between 

R2 and 

R3 

Sharp 

differences 

between R2 and 

R3; 

Homogeneity of 

border 

Edge quality,  

Edge contrast, 

Entropy ratio 

(Fgbg) 

Phase-bright 

internal cells 

R1 Pixel intensity 

contrasts in R1; 

Homogeneity of 

R1; Textures in 

R1 

Local std.,  

Entropy,  

Histogram of 

local std. (Hg1, 

Hg2),  

Fraction of 

dark/light 

transitions 

(areaRatio) 

Inter-nuclear 

distance 

R1 Size of 

individual cells 

in R1 

Holes/Area 

Epithelial 

characteristics 

R2, R3 Appearance of 

elongated cells 

in R2; 

Homogeneity of 

R2;   

Epithelial cells 

transverse at 

colony borders 

Stats of shapes 

in R2 and R3 

regions (Edge 

circles, Edge 

ratio, E1, E2, 

ep-slope) 

 

 



 

 

Figure 3: Three regions of interest: exterior margins (R3), 

interior margins (R2), and center region (R1). 

 

Table 3 summarizes the process of mapping the five biological 

rules  (“IF<condition is met>THEN<colony rank>”) and parsing 

the “<condition>” parts into attributes that correspond to image 

characteristics and their corresponding computational features 

evaluated over image sub-regions, which represent cell colonies.  

Figure 3 shows the three regions of interests R1, R2 and R3 that 

can be derived from stem cell colony segmentation. We describe 

the stem cell colony segmentation and the computational features 

presented in Table 3 (right most column). 

  

4.1.1 Segmentation 

We have developed an automated segmentation technique 

consisting of the following steps (as illustrated in Figure 4): 

 Step 1: In a 20 x 20 neighborhood around each pixel, 

we compute both an average intensity value and a local 

intensity standard deviation value. Average values and 

standard deviations over a whole image provide levels 

of intensity and contrast to classify each pixel.  

 Step 2: We collect pixels with either high intensity (> 

0.5 standard deviation above image mean) or high 

contrast (> 1.0 standard deviation above image mean), 

and fill in holes.  

 Step 3: We apply morphological erosion (kernel size = 

2) to separate colonies from one another and from 

epithelial cells surrounding them. 

 Step 4: Finally, we split a colony based on the geodesic 

distance of each interior pixel from a colony boundary 

[14]. 

 

Figure 4 shows the resulting segmentation mask and 

corresponding manually segmented mask.  Once a stem cell 

colony is automatically segmented, the three image regions of 

interest shown in Figure 3 are found by morphological erosion (to 

find R1) or dilation (to find R3) of the segmentation mask (kernel 

size = 50). 

Manually and automatically segmented colony masks are 

compared using the Dice similarity metric [15].The Dice metric 

(D) reports an index that varies between 0.0 (no match), and 1.0 

(a perfect match). Equation (2) presents the Dice metric 

computation:  

 

D = 2A/(2A + B + C),     (1) 

 

 

 

Figure 4: Top: original image; clusters of high intensity pixels. 

Middle: clusters after erosion; clusters colored by distance to 

colony border; Bottom: final automated vs. manual 

segmentation masks. 

 

where A is the number of image pixels shared between the two 

samples and B and C are pixels found only in the first and second 

samples respectively. An index of 0.7 and higher qualifies as 

substantial similarity [15].  

 

4.1.2 Derived Quantitative Computational 

Features  

 

Many computational features in Table 1 are computed by 

incorporating well known techniques such as thresholding, local 

standard deviation measurements, and entropy calculations.  

Colony edge features are derived by linearizing the colony 

boundary using a polar coordinate transformation (see Figure 5).  

Each image is transformed to polar (r,θ) coordinates with respect 

to the center of the colony, where the x axis represents the 

distance of a pixel to the colony center and the y axis represents 

an angle θ about the center, (θ: [0,360] degrees). Additional 

details about computational feature computations are provided in 

Appendix A. 

 



 

Figure 5: top: Sample colony image, bottom: image 

transformed to polar coordinates, colony boundary in white. 

4.2 Prediction Modeling 

We included two non-linear prediction models (decision tree and 

random forest) and one linear prediction model (logistic LASSO - 

least absolute shrinkage and selection operator). The decision tree 

prediction model intuitively fits our effort to translate biological 

rules in a form “IF<condition>THEN<rank assignment>” 

statements to a computational model. All models were validated 

by a leave-one-out cross validation. 

5 Experimental Results 

5.1 Segmentation 

 

Manual segmentation was performed using an ImageJ plug-in, 

Segmentation_manual_514 [6]. The accuracy of the developed 

segmentation technique is evaluated per stem cell colony in terms 

of the Dice index presented in Equation (2), comparing automated 

with manually generated colony masks. According to Dice indices 

computed over all segmented colonies, 96.25 % of 481 segmented 

colonies are above 0.7 (substantial similarity), and 88.96 % are 

above 0.8.  Figure 6 shows the Dice indices for all 481 colonies. 

5.2 Performance of Prediction Models 

We compare the accuracy of our automated bio-rule based ranking 

system with the accuracy of a system using off-the-shelf image 

features.  The evaluations are performed for both linear and non-

linear prediction models (see Table 1).   

The comparison of prediction models is slightly complicated by 

the coarse reference information the experts provide.  That is, as 

evidenced by the frequency with which the experts disagree with 

each other (66 of 449 colonies scored by both experts), their 

scores are not absolute truth and should be considered random.   

As such, even when both experts classify a colony as pluripotent 

(or not), the true pluripotency state of that colony remains 

unknown.  To make use of the at most two (binary) scores per 

colony as “reference”  when assessing a given model’s 

performance, we characterize how likely the reported scores from 

colony i  were to occur under that model’s fit to the log-

likelihood from the binomial distribution: 

   )(mod,)(mod,)(mod, 1ln1ln set

iij

j

set

iij

set

i pYpY  , (2) 

where 
)(mod,set

ip denotes the pluripotency probability or 

proportion of a large number of experts that would score colony i   

as pluripotent, as estimated by applying modeling technique 

mod ={Logistic LASSO, Random Forest, Decision Tree}  to 

feature set set ={Bio Rules, Off Shelf, All}, and ijY  is as defined 

in Section 3.1. 

 

The results reported below correspond to an analysis in which the 
)(mod,set

ip were estimated via leave-one-out cross validation.  

Similar results were obtained when instead
)(mod,set

ip was 

estimated using 10-fold and 20-fold cross-validation, respectively, 
illustrating a robustness of our findings to the size of the testing 

sets used during cross validation. 

 

Within each modeling method, following fitting, we conduct 

pairwise comparisons of the feature sets by tallying across the 

colonies, to find which set produced the largest likelihood of the 

reported scores. (Model fits for which the observed scores are 

more likely are better.) 

 

  

 

Figure 6: Dice similarity index measurements comparing 

manual and automatic segmentation masks. 

Figures 7-9 show a summary of pairwise comparisons of the 

feature sets within each model. Figure 10 reports the median cross 

validation (CV) log likelihoods for each combination of model 

and feature set. The median likelihood of our bio-rule feature set 

is statistically significantly higher than the off-the-shelf feature set 

using non-linear prediction models (decision tree and random 

forest models). Sets are statistically significantly higher where p-

values from a sign test for equality of medians (shown in Figures 

7-9) are less than p=0.05.  For example, looking at the results of 

the random forest model, Figure 8 shows a p-value of 3.71e-05 



comparing our bio-rules feature set with the off-the-shelf feature 

set and 9.62e-05 comparing our bio-rules set with all 3 features 

taken together. This is also an illustration of the effect of 

extraneous features on the output of the model. Within each 

pairwise comparison shown in Figures 7-9, the number of 

colonies for which each feature set produced the larger likelihood 

is reported underneath the respective label. A p-value from a sign 

test for equality of medians is reported at the top of each pairwise 

comparison. The green section characterizes the number of 

colonies for which the two methods produced equal likelihoods. 

5.3 Relating Off-The-Shelf and Biologically 

Motivated Features 

 

We have shown the benefits of direct interpretation of biological 

rules into image features in comparison to the more traditional 

approach of using off-the-shelf feature sets. However, there is a 

trade-off between the labor needed to custom-design image 

features according to biological rules and the loss of biological 

interpretation of features in off-the-shelf sets. For this reason we 

were motivated to explore whether one can relate off-the-shelf 

Haralick features to our custom-designed features, so that the off-

the-shelf features could be used in the future for automation of 

colony ranking based on similar biological rules.  

 

Figure 7: Barplots displaying pairwise comparisons of the 

feature sets using the Logistic LASSO model. 

 

Figure 8: Barplots displaying pairwise comparisons of the 

feature sets using the Random Forest model. 

  

 

Figure 9: Barplots displaying pairwise comparisons of the 

feature sets using the Decision Tree model. 



 

Figure 10:  Median cross validation (CV) log likelihoods for 

each combination of model and feature set. 

 

Table 4 shows the statistical correlation between each Haralick 

feature and the features of our biologically motivated feature set. 

Mathematical descriptions of the Haralick features can be found 

in [16] with the indices following the definitions of Angular 

Second Moment (h1), Correlation (h2), Contrast (h3), Sum of the 

Squares of Variance (h4), Inverse Difference Moment (h5), Sum 

Average (h6), Sum Variance (h7), Sum Entropy (h8), Entropy 

(h9), Difference Variance (h10), Difference Entropy (h11), and 

Information Measure of Correlation 1 (h12). Information Measure 

of Correlation 2 is not included because these values were all 

negligible when applied to the stem cell colony images. The co-

occurrence matrix needed for Haralick features was computed 

along the horizontal orientation with pairs of pixels apart by one 

pixel. 

 

Table 4: A correlation matrix between the Haralick features 

and the biological rule derived features. The high/low values of 

columns containing high correlations are highlighted. 

Feature h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

Size -0.58 -0.08 -0.39 -0.29 -0.35 0.39 0.34 -0.01 0.74 -0.16 0.03 0.86

Local.std 0.03 0.76 0.08 0.92 -0.07 -0.22 -0.07 0.64 -0.07 0.82 0.68 -0.41

Perim -0.53 -0.16 -0.23 -0.31 -0.21 0.3 0.24 -0.04 0.68 -0.22 -0.08 0.82

Circularity -0.13 0.29 -0.3 0.17 -0.32 0.26 0.29 0.24 0.07 0.24 0.32 -0.06

Entropy -0.89 0.54 -0.33 0.44 -0.69 0.6 0.68 0.85 0.86 0.42 0.67 0.53

Fgbg -0.45 0.4 -0.21 0.35 -0.38 0.3 0.36 0.56 0.34 0.35 0.46 0.09

Edge quality 0.28 0.24 0.08 0.31 0.15 -0.3 -0.25 0.07 -0.26 0.29 0.17 -0.34

Hg1 0.07 0.7 -0.01 0.79 -0.04 -0.15 -0.01 0.47 -0.09 0.75 0.58 -0.35

Hg2 0.07 0.66 -0.02 0.75 -0.04 -0.13 0 0.43 -0.08 0.71 0.54 -0.31

E1 0.1 0.33 -0.01 0.37 -0.11 -0.05 0.02 0.29 -0.19 0.33 0.32 -0.38

E2 -0.06 -0.4 0.02 -0.46 0.12 0.06 -0.01 -0.37 0.11 -0.41 -0.41 0.33

area ratio -0.46 -0.2 -0.27 -0.38 -0.48 0.72 0.66 0.1 0.39 -0.34 -0.06 0.38

Edge contrast -0.61 -0.12 -0.37 -0.34 -0.61 0.8 0.74 0.19 0.56 -0.28 0.05 0.52

Edge ratio -0.52 0.28 -0.27 0.18 -0.49 0.44 0.45 0.43 0.53 0.19 0.37 0.38

Ep-slope 0.03 0.01 -0.03 -0.01 -0.07 0.03 0.02 0.01 -0.03 -0.01 0.03 -0.06

Edge circles 0.59 0.04 0.3 0.21 0.3 -0.35 -0.32 -0.06 -0.73 0.11 -0.05 -0.81

MAX 0.59 0.76 0.3 0.92 0.3 0.8 0.74 0.85 0.86 0.82 0.68 0.86

MIN -0.89 -0.4 -0.39 -0.46 -0.69 -0.35 -0.32 -0.37 -0.73 -0.41 -0.41 -0.81 

 

Based on the high absolute correlation results in Table 4 

(highlighted in yellow), one could approximate the custom-

designed features with a subset of Haralick features based on 

input biological rules. The highest absolute correlation of 0.92 

was found between h4 (Sum of the Squares of Variance) and local 

standard deviation. The smallest absolute correlation of 0.39 was 

found between h3 (Contrast) and size. However, the prediction 

modeling results indicate that non-linear models are more accurate 

than linear models and hence discovering feature relations has to 

be conducted for each non-linear model separately.  

In addition, we have observed that some of the Haralick features 

vary with imaging conditions more than with colony attributes. 

For example, one can contrast the variations of Haralick feature 

h4 (Sum of the Squares of Variance) and h9 (Entropy), obtained 

from colonies imaged over three wells as shown in Figure 11. The 

values for h4 vary over the different imaging conditions for the 3 

different wells, whereas values for h9 remain similar over the 3 

wells. 

 

6 Conclusions  

We demonstrated the benefits of using biological rules to select 

image features for the automation of stem cell colony ranking. 

Based on our analyses of segmentation and prediction models, the 

performance of automation, measured with well-defined metrics, 

benefited from additional information presented as a set of 

biological rules. We concluded this based on the comparison of 

using our new feature sets with off-the-shelf features including 

Haralick texture features and wavelet features. The analyses also 

suggest that the model we are looking for may not be a strict 

linear model. The improvement we saw in our model was seen 

only in the non-linear (random forest and decision tree) models. 

Using these 2 models we showed an improvement in the outcome 

of the model using a selected set of features over the outcome of 

either using only off-the-shelf features, or using a combination of 

all feature sets together. Finally, we attempted to establish 

relations between the custom-designed features and off-the-shelf 

features based on correlation in order to minimize future labor 

investments into custom-development of image features.  

In the future, we plan to further investigate the process of 

establishing biological rules for stem cell colony ranking. There is 

a need to incorporate biological knowledge into automated 

systems and to decouple sources of errors contributing to the 

automations based on biological rules. Having a biological 

connection between image features and the visual characteristics 

that biological experts are looking for provides additional value to 

biologists in understanding stem cell colonies. 

 

 

 

 



 

 

Figure 11:  Top: Haralick feature h4 and Bottom: Haralick 

feature h9, computed over colony masks from well 1 (red), well 

2 (green), and well 3 (blue). 
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Appendix A: Translation of Biological Rules 

 

Distinct margins at colony border; homogeneous border  

Pluripotent colonies have distinct colony borders, which we 

translated into pixel intensity differences at the R2-R3 border, and 

pixel entropy differences at the border. After polar transformation, 

each colony border is represented by a nearly linear region on the 

transformed image. For each border pixel we found the ratio of 

the five inner pixels to the five outer pixels. The edge quality 

feature is an average of all of these ratios. We also computed the 

entropy of pixel intensities 50 pixels inside and 50 pixels outside 

the R2-R3 border, and the Fgbg (foreground/background) features 

is the ratio of these two entropies. Homogeneous border is 

interpreted to mean consistent pixel intensities at the R2-R3 

border. An Otsu thresholding provided a threshold value for most 

of the bright cells of each colony. Holes in the resulting mask are 

filled, leaving most of the unfilled pixels near the colony border. 

The edge contrast feature is a ratio of the filled area to the total 

area; the closer to 1.0, the smoother the edge. 

 

Phase-bright internal cells; homogeneous region 

Pluripotent colonies also are characterized by contrasting 

intensities between the center and the outsides of individual cells 

within the colony. We looked for very high contrast in pixel 

intensity at the level of a single cell, which is approximately a 20 

x 20 pixel area on our 10X images.  For each colony pixel, we 

found a local standard deviation of pixel intensity in this small 

neighborhood. We average the local standard deviation values 

over the whole image to find the fraction of pixels in the mask 

that are 3 standard deviations above the image average. This 

fraction is our local standard deviation (local std) feature. (Below 

we also use the local std to measure contrast at the colony edge.) 

Because the cells are round, the phase bright intensities will 

create an expected textural pattern on high-scoring colonies, so 

we compute the entropy of the colonies to quantify this texture. 

We also measure the phase-bright characteristic with the overall 

ratio of dark to light pixels, performing Otsu segmentation on 

each original image to threshold between light and dark, and then 

finding the ratio of the resulting thresholded mask to the entire 

mask (denoted as areaRatio feature). 

 

To measure phase-bright homogeneity, we look at the similarity in 

local std. values in R1. We separate the pixels into different 

levels, determined by how many standard deviations they lie 

above the mean value for the image, five levels in 0.5*stddev 

increments. Groups of pixels are ordered by how many pixels are 

in each group. One feature (Hg1) measures the fraction of pixels 

in the groups with the largest number of pixels: (highest + 

0.5*second highest – 0.25)/0.75. A second feature (Hg2) is the 

standard deviation of the number of pixels in each group. 

Inter-nuclear distance 
Size of individual cells in a colony indicates the state of that 

colony, and we measured the ratio of internal dark cell pixels to 

edge pixels in the colony as a measure of the size of an average 

individual cell. Again we used Otsu segmentation to separate light 

and dark pixels, and measured the fraction of the pixels in the 

resulting mask without filling holes, for a feature called 

holes/area. The smaller the cells, the more cell edge pixels we 

should see, and the larger that ratio. 

 

Figure 12: Sample colony image with dark pixel clusters 

colored by roundness, low to high: red, orange, yellow, green, 

blue, and purple. 

 

Elongated cells along colony edge; epithelial cells 

transverse to R2-R3 border  
For the edge cell characteristics, we identify both the elongated 

edge cells and the outlying epithelial cells starting with the same 

technique. Dark clusters of pixels are isolated by selecting pixels 

at least 3/4 of a standard deviation below the image mean. Each 

cluster is labeled based on its roundness. Cluster shape analysis is 

performed before the image is transformed to polar coordinates. 

The elongated cells just inside the R2-R3 border appear as small 

very round clusters (blue and purple in Figure 12), and the 

epithelial cells outside the R2-R3 border appear as more linear 

clusters (red and yellow in Figure 12). 

To quantify the elongated cells inside the R2-R3 border, we 

define a feature we call edge-circles. After transforming the 

images to polar coordinates as shown in , we see that the area just 

inside the border is filled with the round clusters from the original 



image. Edge-circles is the measure of what fraction of the area just 

inside (within 50 pixels of) the R2-R3 border contains these cells. 

A feature called ep-slope measures the alignment of the border 

with epithelial cells 50 pixels outside the R2-R3 border, an 

average of the slope of each cluster in that region. Slopes are 

measured in the transformed image, looking for linear clusters. 

Image features E1 and E2 measure the edge homogeneity, using 

local std values at the colony edge. E1 is the fraction of high 

contrast pixels (local std more than half a standard deviation 

above the mean value) for the image. E2 quantifies how low the 

areas of lowest contrast border areas are, a value based on the 

lowest value of the local std measured at the border. Another 

measure of the homogeneity is quantified using a feature called 

edge-ratio. Here the size of the largest cluster produced from Otsu 

thresholding is compared with the size of the colony mask. The 

more homogeneously the edge is filled with elongated cells, the 

higher the ratio of thresholded pixels to mask pixels. 

Colony size 
The size of the colonies are measured by area (number of pixels), 

perimeter (number of pixels at the border), and circularity 

(4*π*area/perimeter2), since smaller colonies tend to be more 

circular. 


