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Abstract—The paper addresses the problem of understanding 

quality of image measurements extracted using widely used 

software libraries from large images. Image measurements 

(features) are extracted using software packages that vary in 

terms of programming languages, theoretical formulas for the 

same image feature, algorithmic implementations, input 

parameters, units of measurements, and definitions of image 

regions of interest. Our motivation is to quantify numerical 

variability of image features across software packages and 

determine image accuracy with respect to reference images. In 

addition, our objective is to enable scientists to extract any 

image feature of interest from heterogeneous software libraries 

and gain provenance of every extracted numerical feature 

value.  

We pursue this objective by designing a client-server system 

that integrates image feature extractions from open source 

libraries such as ImageJ/Fiji, Python (scikit-image), 

CellProfiler, WND-CHARM, and in-house Java software 

packages. The system becomes useful for evaluating quality of 

image measurements, leveraging distributed computational 

resources for feature computations over big image data, 

sharing resulting feature values, and reproducing the feature 

values based on provenance.  As an application of the designed 

system, we report the quality evaluations of 319 image features 

extracted using ImageJ/Fiji, Python (scikit-image), CellProfiler 

and in-house Java software packages with 43 duplicate 

features across the four packages. Using the normalized 

difference as metric, we identified 6 out of the 43 common 

features to differ over 1% in value and discuss the sources of 

these numerical differences.  

Keywords-Big Data Science and Foundations: Data and 

Information Quality for Big Data 

I.  INTRODUCTION 

Quantitative imaging and image informatics depend on 

taking image measurements over a region of interest. These 

image measurements are frequently denoted as image or 

object features. They are extracted by applying a wide 

variety of mathematical operations to image pixel values 

implemented in software. The software implementations 

vary in terms of programming languages, theoretical 

formulas for the same image feature, algorithmic 

implementations, input parameters, units of measurements, 

and definitions of image regions of interest. The motivation 

of our work is (1) to understand the variability of image 

feature extractions and (2) to enable scientists to compute 

any feature of interest from widely-used heterogeneous 

software libraries and gain provenance of every extracted 

numerical feature value. The word provenance refers to the 

record of image feature value’s ultimate computational 

derivation and passage through various software tools. 

To study the variability, the challenges lie in (a) 

identifying the same image features in multiple software 

packages, (b) setting their input parameters consistently, and 

(c) establishing pairs of reference images and image features 

for evaluations. In addition to the knowledge about 

variability, one would like to gather and access information 

about each feature extraction so that the feature values are 

traceable, reproducible, and executable in parallel on big 

image data. The challenges of enabling extraction of 

traceable image features lie in (a) integrating heterogeneous 

software, (b) gathering and hyperlinking all provenance 

information about feature extraction, and (c) designing a 

client-server system that enables data upload, configuration, 

computationally scalable feature computation, and access to 

feature values and all provenance artifacts to re-execute the 

image measurements. All the above challenges are mapped 

into two basic questions and associated problems. (1) What 

image features are trustworthy across software packages? 

(2) What practical solution would improve our trust in 

image features? 

We approach the first problem by considering 319 image 

features extracted using ImageJ/Fiji, Python (scikit-image), 

CellProfiler and in-house Java software packages with 43 

duplicate features across the four packages. Using the 

normalized difference metric, we identified 6 out of 43 

features to differ over 1 % in value. We analyzed the 

sources of these numerical differences for some features to 

raise the awareness of community users. We approach the 

second problem by designing a web system with (1) 

interfaces to loading images and extracting image features 

while utilizing distributed computational resources, (2) 

access to feature implementations in several software 

packages, (3) a provenance information gathering 

mechanism, and (4) feature values hyperlinked with all 

computational provenance artifacts.  

While there is an abundance of image feature 

implementations, the quality of feature values in terms of 

accuracy, variation, and execution traceability has not been 



evaluated. Many image features have been implemented in 

academic environments [1], [2], [3], commercial platforms 

[4], or in publicly available image libraries [5], [6], [7]. The 

use of these image features is primarily for classification 

(find the most discriminative or predictive features, given a 

certain number of classes) and for discovery (understand 

statistical and semantic image characteristics based on 

image features). In the context of discovery, our focus is on 

the quality of image feature with respect to a semantically 

meaningful object rather than low-level image descriptors 

(e.g., Scale-Invariant Feature Transform (SIFT), Speeded-

Up Robust Features (SURF), Histograms of Oriented 

Gradients (HOG), Local Phase Quantization (LPQ), 

Binarized Statistical Image Features (BSIF), Local Binary 

Pattern (LBP) or Local ternary patterns (LTP)). Thus, our 

analysis is about accuracy of those image features that 

describe intensity, shape, or texture properties of an object. 

Regarding computational scalability and traceability of 

image feature execution, we are leveraging work in the area 

of scientific workflows, such as the capabilities of Pegasus 

[8]. In comparison to many existing scientific workflows, 

our work integrates heterogeneous software using a 

common file interface as opposed to wrapping software to a 

pre-defined workflow programming interface. Furthermore, 

our work is filling the gap in traceability of image feature 

execution by designing a community resource for sharing 

and reproducing scientific measurements. 

The novelties of the work are (a) in documenting image 

feature variability across four software packages and (b) in 

designing a software plug-and-play framework for adding 

image feature extraction plugins, conducting image feature 

comparisons, and for delivering image feature values 

hyperlinked with computational provenance information. 

The paper is organized as follows. Sections II, III, and IV 

are devoted to variability, accuracy and traceability of image 

features respectively. Sections II and III consist of 

evaluation setup, numerical evaluation, and deeper analysis. 

Section IV focuses on design and capabilities needed to 

extract any image feature of interest from heterogeneous 

software libraries and gain provenance of every extracted 

numerical feature value. An overall summary is provided in 

Section V. 

II. VARIABILITY OF IMAGE FEATURES 

The variability study provides numerical evidence about the 

differences in various implementations of the same image 

features.  

A. Feature Extraction Software  

We evaluated four software packages with the total of 218 

unique features. The subsets of unique features are 

implemented in Python (40 features), ImageJ/Fiji (33 

features), Java (74 features), and CellProfiler (101 features). 

Python features were implemented on top of an existing 

image processing library (scikit-image [5]), ImageJ/Fiji [6] 

features were implemented as a plugin using the ImageJ 

application programming interface (API), and Java features 

were implemented from scratch at NIST [9].  

We focused primarily on intensity and shape features in 

this work. 

B. Test Images 

We chose the live phase contrast 3T3 images  comprised of 

238 images and a total of 8162 cells with different shapes 

and sizes (Figure 1) [10]  to analyze common feature value 

variability between all 4 software packages. The cells are 

segmented using the EGT technique [11], and the masks are 

saved as labeled images. The features are computed on top 

of the segmented Regions of Interests (ROIs). 

 

  
Figure 1: Example test image (left) and its corresponding segmented mask 

(right). Each ROI in the segmented mask has a unique randomly chosen 

color for display purposes. 

 
 

 
Figure 2: Histograms of area (left) and circularity (right) features from the 

objects defined by test images and their masks. 

 

The measured images were selected for testing over 

synthetic images because (a) we did not have mathematical 

models for generating synthetic images that span a wide 

range of each image feature, and (b) we found the measured 

images to be a good initial approximation of the value range 

of each image feature. Figure 2 shows the histogram of test 

image measurements for area and circularity features. 



C. Evaluation Metric 

Given two vectors of feature values V1 and V2 computed 

over a set of ROIs (image segments) by two software 

implementations of the same feature, we compute their 

dissimilarity metric S as the sum of relative errors  

normalized with respect to the minimum of the two values 

from the vectors V1 and V2 that exceed a given threshold: 

 

S =                         (1) 

 |V1i – V 2i| /min(V 1i , V 2i)                                   

 

The index i = 1,…,n and n is the number of ROIs. T is the 

user defined error threshold defined as 1 % of  in our 

work. The purpose of T is to detect substantial feature 

differences. The error is normalized by the minimum value 

which conveys the worst case error scenario. 

D. Image Feature Variability Analysis  

TABLE I. shows the results of feature variability 

evaluations using the aforementioned metric. The “Agree” 

column indicates when software have less than 1 % error 

across all 8162 test cells. The “Disagree” column indicates 

whether there is an error larger than 1 % across 8162 test 

cells between the tools that agree and the ones that disagree. 

The “Absent” column is used to denote with tools do not 

have an implementation of a given feature. 

 

TABLE I.  SUMMARY OF COMMON FEATURE VARIABILITY BETWEEN 

TOOLS BASED ON METRIC S (I = IMAGEJ, J = JAVA, P = PYTHON, C = 

CELLPROFILER).  

Feature name Agree Disagree Irrelevant

1- Perimeter P,I,J,C

2- Solidity P, C I J

3- Circularity I, J C, P

4- Kurtosis I, J C, P

5- Bounding_Box_X P, J I C

6- Bounding_Box_Y P, J I C
 

 

Figure 3 illustrates the perimeter differences  between its 

feature value  and the average  of all three computed 

perimeter values per region of interest (i.e., cell segment). 

The feature difference follows the formula below: 

 

     (2) 

 
The index i = 1,…,n; j = 1, 2, 3, j is the software index, and 

n is the number of ROIs, The perimeter values range 

between 44.4 and 542.5 pixels in the set of randomly chosen 

64 ROIs from the 8162 available ones. The number 64 

corresponds to approximately the number of ROI present in 

two figures. This random data sampling is done only for 

visualization purposes. 

E. Sources of Feature Variations 

We have summarized our analysis of some of the sources 

of feature variations for the features listed in TABLE I. The 

summary also includes features requiring “special attention” 

since they are prone to variations.  

 Perimeter and Circularity: The perimeter variability 

comes from the fact that algorithmic implementations differ 

in counting interior or exterior pixels, use 4 or 8 

connectivity of pixels, and might interpolate between the 

boundary points. Circularity is inversely proportional to 

perimeter squared.  
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Figure 3: Perimeter feature differences over multiple regions of interests 

(ROIs). The unit is image pixel. 

 

 Solidity: The same definition of solidity is used by 

Python and ImageJ (Area/Convex Area). The difference 

between these values comes from the convex area 

differences since the implementations vary. 

 Kurtosis and Skewness: The kurtosis disagreement 

in values between software packages depends on whether 

the excess kurtosis or kurtosis are implemented (fixed offset 

by 3). Similarly, one has to be aware of multiple definitions 

of skewness, for instance, sample versus population 

skewness. 

 Centroid (and Bounding Box): The centroid and 

the bounding box are both subject to the choice of the 

reference coordinate system (+col ~ x; +row ~ y or +row~ -

y). In addition, the bounding box of a ROI is defined by its 

upper left corner coordinate and its width and height. 

However, the bounding coordinates might be vary 

depending on the choice of values as integers or floats in a 

pixelated image. 

 Euler number (special attention): The Euler 

number definition is the number of objects (ROI) minus the 

number of holes. The value might differ depending on the 

assumptions about the number of ROIs (Python assumes 

#ROIs = 1). 

 Histogram bins for intensities represented by more 

than 8 bits per pixel (special attention): ImageJ uses the max 



value plus one as the upper value of the last bin. It assumes 

that the lower value of the first bin is always zero. 

Python and its numpy library provides two definitions. B = 

histogram(X, N) uses N equally spaced bins within the 

appropriate range for the given image data type. The 

returned image B has no more than N discrete levels. B = 

histogram(X,edges) sorts X into bins with the bin edges 

specified by the vector, edges. Each bin includes the left 

edge but does not include the right edge. The last bin is an 

exception since it includes both edges.  

 Orientation (special attention): The orientation is 

the angle between the major axis of a given ROI and the x-

axis. It can be computed using two mathematical formulas: 

(1)  where atan is the arctangent function and 

 and  are the x and y decompositions of the major axis 

of the ROI; (2)  where  and  are 

the second moment of area along the x and y axes and  is 

the product moment of area. These two formulas are 

equivalent if the first one is computed in the range of 

 using atan and the second one in the range of 

 using atan2. The variations are observed if different 

value ranges or angular units would be reported by selected 

software packages. Range can be either  or 

 and the unit can be either radian or degree. In 

addition, the sign of the output angle depends on the 

coordinate system (image coordinate or graph coordinate 

system with clockwise or counter clockwise axes). 

F. Discussion 

Absolute value of feature variability depends on the 

choice of a metric. The current metric has a user-specified 

threshold that was set empirically to 1 % of the relative error 

 in our analysis. In addition, the current analyses do not 

include texture features because we encountered a large 

variety of definitions, naming inconsistencies, and hard-

coded parameters. The work on including texture features is 

in progress. We would also note that the feature comparison 

is conducted using pixel units. Among the evaluated 

software packages, ImageJ reports all measurements in 

physical units (i.e., micrometers) that a user should be aware 

of. 

III. ACCURACY OF IMAGE FEATURE IMPLEMENTATIONS 

Accuracy analysis is based on two key components: (1) 

generation of synthetic images and their corresponding 

reference feature values, and (2) a metric to compute the 

error between reference and computed values. In this study, 

we used a theoretical feature value as the reference and 

assumed that the generated synthetic images are very close 

representations of analog shapes associated with the 

theoretical model. We documented the representation 

approximations by collecting and comparing image features 

for a range of analog shape parameters.  

For the accuracy evaluations, we used the same software 

libraries as before but sub-selected image features for which 

we could generate reference feature values. Given the fact 

that we know the reference value, we could compute 

normalized relative errors  per ROI with respect to the 

reference feature value  (in comparison to the minimum 

value used in Eq. (1)).  

 

    (3) 

 

 is the measured feature value, and i is the index of a ROI 

(image segment). 

A. Test Images 

We designed synthetic images with objects for which 

intensity, shape, and texture could be computed 

theoretically. Figure 4 shows three such image examples. 

The mathematical models include linearly increasing 

intensities with varying ranges and an ellipse shape with 

varying minor and major axes. The parameters of each 

model were varied when generating synthetic images. 

Additional synthetic images were created for testing Euler 

number as shown in Figure 7. 

 

  
Figure 4: Examples of two synthetic images with known intensity and 

shape image features. 

B. Image Feature Accuracy Analysis  

We report accuracy analyses for three image features 

including (1) perimeter of a circle, (2) major and minor axes 

of ellipse, and (3) Euler number of a binary image. 

 Perimeter: We created 23 synthetic binary images 

of a circle with radius ranging between  pixels. 

The circle generation is done on images with size (500, 500) 

pixels using the following formula:  

 

        (4) 

 

The circle centroid coordinates are  and , 

and  is the circle radius. The perimeter reference value was 

set to . Figure 5 displays the normalized perimeter error 

 with respect to the ground truth that is computed as a 

function of circle radius. Based on Figure 5, the error is 

large (up to 25%) for small radius values and it converges to 

a value of 5% as the radius reaches values larger than 100. 
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Figure 5. Normalized perimeter error vs circle radius 

 

Major and minor axis length: During the feature 

variability evaluation, we detected minor differences that 

were below the 1 % threshold on feature error. To test major 

and minor axis lengths we created a set of 55 ellipse images 

with multiple values for major and minor axis length that 

ranges between 10 and 370. Figure 6 shows the normalized 

relative error  of major axis length computed according to 

Eq. (3) for ROIs in the 55 simulated images. It was 

observed that all three implementations had an error larger 

than 0.1 % when the ellipse shape was flat or the ellipse area 

was small. All implementations demonstrated the same 

dependency of feature error on ellipse shape/area. 

 

 
Figure 6. Major axis length normalized relative error as a function of 

minor/major axis length for 55 synthetic ellipses. 

 

 Euler number: Figure 7 displays three synthetic 

images and their Euler numbers (EN). EN is computed as 

the number of ROIs minus the number of holes. The values 

computed by Python deviated from the reference numbers 

since the implementation assumes only one ROI. 
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Figure 7. Synthetic images created for testing the Euler Number feature 

C. Discussion 

The design of a synthetic image generator plays a 

significant role in representing the theoretical value and is 

always limited by the integer image lattice. For example, the 

results in Figure 5 and  Figure 6 would have been different 

if we placed the center of each ellipse at the lattice 

intersection as opposed in the middle of a square pixel 

(offset is 0.5). While the tools would still agree amongst 

each other, there will be bias between the computed major 

axis length value and the reference value. Thus, additional 

accuracy evaluations are required to determine error 

contributions of synthetic image generators. 

IV. TRACEABILITY OF IMAGE FEATURES 

In the effort to provide access to traceable image features, 

we designed a client-server architecture of a web system 

shown in Figure 8. The main capabilities of this web-based 

framework for traceable image feature extraction are: (1) 

extensibility to include image feature extraction libraries 

written in any programming language via a file interface, (2) 

data management to upload collections and download 

feature values, (3) configuration and execution  interface to 

image features registered in the system, and (4) 

collaborative access to traceable image feature values that 

are hyperlinked to their provenance information and all 

downloadable re-execution artifacts.  

  

 
Figure 8: Architecture of a client-server system for traceable image feature 

extraction 

 

The system was developed as a client-server application, 

built on top of a scientific workflow management system 

(WMS). The server-side follows the Java Representational 

State Transfer (REST) API built using the Spring 



framework. It is coupled with a MongoDB database and 

calls Pegasus WMS [8] to manage the feature extraction 

jobs. The client-side is a light web application written in 

JavaScript using the AngularJS framework. The client side 

consumes the REST API from the server side. 

A. Integrating heterogeneous image software 

Ideally, one would like to load an image and its mask to 

RAM and then compute a spectrum of image features while 

capturing the provenance information. However, when 

dealing with image feature methods written in 

heterogeneous programming languages, the challenges lie in 

retrieving, compiling and executing feature methods on 

various platforms, and sharing image data loaded in RAM 

with each executable. Our approach is to regroup several 

existing image processing software packages into a single 

access point by designing a software integration framework. 

The other challenge of sharing data across heterogeneous 

software is addressed by using a common file interface to 

disk instead of more complicated sharing in RAM.   

Input and output standardization: Our first step toward the 

homogenization of heterogeneous software packages was to 

define standard input and output formats. 

Input: We chose the Extensible Markup Language 

(XML) to design a standard input interface defining the 

input parameters, such as the input file locations (raw 

images, optional segmentation masks, and optional tiling 

masks), output location, and feature extraction configuration 

(features to extract and their optional parameters values). 

Our choice of XML was motivated by the fact that most 

programming languages offer libraries that can be used for 

manipulating XML documents and the XML format is 

human-readable. 

Output: We chose Comma-Separated Values (CSV) files 

as the standard output format for the extracted feature 

values. This format is both machine and human readable 

and supported in multiple software libraries. In order to 

merge feature values from diverse feature libraries, we 

defined naming conventions for the output file names and 

their CSV headers with input image, ROI and feature 

information. 

Software executable and metadata integration: The 

system was designed to be extensible to any image feature 

implementation that can be run from a command-line. Each 

software is compiled to an executable that runs on a server 

and is launched with the common XML input file as an 

argument. In order to be integrated in the system, software 

has to be able to read the feature execution inputs from the 

XML input file and to write the feature results following the 

conventions we designed for the CSV output format and 

feature names.  

The integration of a new software executable in the 

system is done by adding an entry in the Pegasus Workflow 

Transformation Catalog. The software is then registered in 

the MongoDB database by using the system API and saving 

its metadata in the database. The integration of new 

software metadata is performed by providing a list of 

features that the software is capable of extracting, along 

with eventual configurable options. The system can manage 

several versions of the same software, and each version 

corresponds to a new metadata entry in the database, linked 

to the corresponding executable via the Pegasus 

Transformation Catalog. The metadata stored in the 

database are used to generate the software documentation 

and feature selection web interfaces in the system, and to 

link the feature values to their provenance information. 

B. Key aspects of image feature execution  

In order to facilitate the execution of traceable image 

features implemented in heterogeneous software, we 

focused on (1) automated construction of the execution 

inputs captured by the XML input file, (2) input and output 

data management, (3) computational scalability of feature 

extraction, and (4) traceability of computed image feature 

values. 

Construction of feature execution inputs. The input XML 

file is constructed automatically by collecting inputs via the 

client interfaces. Figure 9 shows one of the web interfaces to 

select features. The web interfaces allow a user to upload 

image and segmentation mask collections, select data and 

image feature implementations, and then launch the feature 

extraction. The selected features are linked to their software 

version metadata and the image collections involved in the 

extraction jobs are automatically locked on the server to 

prevent any further modification and allow the provenance 

information to be persistent. 

 

 
Figure 9: The web interface to selecting and extracting image features. 

 

Data management: All input images, computed image 

features, job configurations and provenance information are 

stored in a MongoDB database. This database is accessed 

via the Java API on the server, allowing the registration of 

new software or new versions of existing software in the 

system and linking each computed feature value to all the 

provenance information. 

Scalability of computations: The feature extraction 

computation is managed via the Pegasus scientific workflow 

[8], which was configured to use the High Throughput 

Computing workload management system HTCondor. 

Pegasus distributes the computations depending on the 



available computational resources, collects computational 

provenance, and monitors the execution. 

Traceability of image feature values: The resulting image 

feature values from each software package are merged into a 

single table and delivered in a web interface. The delivered 

feature values are hyperlinked with the input images, the 

XML file that was constructed, the executable that was 

launched, the software repository with the version of the 

image feature extraction code, the execution environment 

provenance information, and the web documentation that 

contains the mathematical formula implemented in the code. 

 

C. Analysis of image feature traceability 

Image feature values are hyperlinked in the web interface 

with all artifacts in order to deliver feature traceability as 

defined in [12] (i.e., “ability to relate artifacts created during 

the development of a software system to describe the system 

from different perspectives.”).  

 

TABLE II.  COMPLEXITY OF FEATURE RE-EXECUTION FROM 

ARTIFACTS FOR FOUR SOFTWARE PACKAGES. [JRE: JAVA RUNTIME 

ENVIRONMENT] 

Image 

Feature 

Software 

Complexity 

of Feature 

Re-

execution 

Required Additional 

Installation  

In-house 

Java 

Simple JRE 1.7 or higher 

ImageJ 

plugin 

Medium JRE 1.7 or higher and 

ImageJ or Fiji 

Python 

program 

Complex Several libraries and 

packages with specific 

dependencies on a chosen 

operating system 

CellProfiler 

wrapping 

program 

Complex Several libraries and 

packages, and CellProfiler 

v2.1.1 with specific 

dependencies on a chosen 

operating system 

 

Beyond describing each feature value with artifacts, our 

ultimate test of feature traceability is to reproduce any 

feature value within a tolerance range from the hyperlinked 

artifacts [13]. This can be easily achieved by replicating the 

inputs (data and XML input file) and re-launching the 

feature computation in the same server environment. 

However, in order to run the downloaded executable with 

all inputs on a third party computer, one has to replicate the 

software environment of the server for launching the 

computation (i.e., install run time engines, scripting 

environments, libraries, and so on). We tested and classified 

feature re-execution from traceable artifacts outside of the 

server according to the complexity of additional installations 

as: simple, medium and complex. TABLE II. shows such 

evaluations of the three analyzed software packages.  

D. Analysis of Feature Computation Efficiency  

Having a client-server system for computing traceable 

image features provided us with a platform for comparing 

values across software libraries and against reference values 

as reported in Sections II and III. Here, we added a 

comparison of feature execution efficiency to complete the 

feature characterization.  

We use 238 microscopy images of NIH 3T3 cells 

together with their manual segmentation masks from the set 

described in Section II.B. The raw images and masks are 

16-bit per pixel images, each image has a file size of 446 kB 

and the entire data set contains a total of 8162 ROIs. In 

order to measure the performance of software packages 

against large images, we used one large field of view of 

stem cell colonies (22K x 22K pixels) imaged in phase 

contrast (16 BPP, 355.9 MB) and in Green Fluorescent 

Protein (32 BPP after calibration, 1.9 GB). The 

corresponding segmentation mask (16 BPP, 9.4 MB 

containing 200 ROIs) was obtained by segmenting the phase 

contrast image [14]. 

The following overlapping image features were 

calculated by all four software packages: Area, Perimeter, 

Mean intensity and Centroid. The calculations were run on a 

server with the specifications: Linux Virtual Machine (VM), 

operating Ubuntu 12.04 LTS 64-bit, four Intel Xeon CPUs 

and 16GB of RAM. The same calculations were run five 

times, and the timing and memory results were averaged. 

The time and memory consumption breakdown per 

software is shown in TABLE III. as collected by the 

Pegasus workflow engine. CPU time is the time measured in 

system clock ticks for which the CPU was dedicated to 

feature calculations. This number is converted to seconds 

for our server with the number of clock ticks per second 

being 100 Hz. Max RSS (maximum Resident Set Size) is a 

measure of the memory occupied by a process and held in 

the main memory (RAM), given in kB (kilobytes) and 

converted in the table below in MB (megabytes) 

Based on TABLE III. the in-house Java package has the 

fastest CPU computation time for a large number of small 

images (8162 ROIs in 238 images) with the speed-up factor 

of 2.81 (Python) and 36.55 (ImageJ). However, against a 

large image (GFP), Python is the most efficient, with a 

factor of 3.92 (ImageJ) and 2.51 (Java). We were not able to 

obtain results for CellProfiler due to its memory 

consumption exceeding our 10GB limit. Python is also the 

most efficient in terms of memory consumption, especially 

for the 3T3 dataset. 

 

 

 

 

 

 



TABLE III.  AVERAGE CPU TIME, RUN TIME AND MAXIMUM MEMORY 

CONSUMPTION OF FOUR IMAGE FEATURE CALCULATIONS FOR 8399 ROIS 

ON 3T3 IMAGES (3T3), 200 ROIS ON PC IMAGE (PC), AND 200 ROIS ON 

GFP IMAGE (GFP) USING FOUR SOFTWARE PACKAGES. 

Software Dataset CPU 

time [s] 

Run  

time [s] 

Max  

RSS [MB] 

Python 

3T3 48.82 58.00 49.98 

PC 35.71 36.38 3,731.41 

GFP 53.78 56.39 4,735.54 

ImageJ 

3T3 76.09 76.54 312.40 

PC 70.94 48.77 3,042.66 

GFP 211.12 183.66 5,070.66 

Java 

3T3 17.32 22.88 780.11 

PC 71.73 64.44 6,594.35 

GFP 135.38 186.02 7,292.10 

CellProfiler 

3T3 633.11 676.99 353.23 

PC N/A N/A N/A 

GFP N/A N/A N/A 

 

V. SUMMARY 

We quantified numerical variability of 43 overlapping 

image features across four software packages, determined 

image accuracy of 6 features with respect to their reference 

images and mathematical models, compared execution 

efficiency of 4 image features, and tested feature traceability 

in terms of complexity of artifact re-execution on third party 

hardware. These discoveries were enabled by designing a 

client-server system for integrating heterogeneous image 

feature libraries, executing feature calculations, and sharing 

hyperlinked image feature values with computational 

provenance artifacts. We deployed the system at NIST for 

internal use and testing.  

In the future, we plan to complete the integration of 

additional publicly available feature extraction software in 

[1], [2] and [7] in order to make the image features traceable 

via our designed framework. We will also investigate the 

variability and accuracy of texture features, and disseminate 

the software and image feature studies to the image 

processing communities.  
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