
Do We Trust Image Measurements?
Variability, Accuracy and Traceability of Image Features

Mylene Simon, Joe Chalfoun, Mary Brady, and Peter Bajcsy

Information Technology Laboratory

National Institute of Standards and Technology

100 Bureau Drive, Gaithersburg, MD 20899
{mylene.simon, joe.chalfoun, mary.brady, peter.bajcsy}@nist.gov

Abstract—The paper addresses the problem of understanding

quality of image measurements extracted using widely used

software libraries from large images. Image measurements

(features) are extracted using software packages that vary in

terms of programming languages, theoretical formulas for the

same image feature, algorithmic implementations, input

parameters, units of measurements, and definitions of image

regions of interest. Our motivation is to quantify numerical

variability of image features across software packages and

determine image accuracy with respect to reference images. In

addition, our objective is to enable scientists to extract any

image feature of interest from heterogeneous software libraries

and gain provenance of every extracted numerical feature

value.

We pursue this objective by designing a client-server system

that integrates image feature extractions from open source

libraries such as ImageJ/Fiji, Python (scikit-image),

CellProfiler, WND-CHARM, and in-house Java software

packages. The system becomes useful for evaluating quality of

image measurements, leveraging distributed computational

resources for feature computations over big image data,

sharing resulting feature values, and reproducing the feature

values based on provenance. As an application of the designed

system, we report the quality evaluations of 319 image features

extracted using ImageJ/Fiji, Python (scikit-image), CellProfiler

and in-house Java software packages with 43 duplicate

features across the four packages. Using the normalized

difference as metric, we identified 6 out of the 43 common

features to differ over 1% in value and discuss the sources of

these numerical differences.

Keywords-Big Data Science and Foundations: Data and

Information Quality for Big Data

I. INTRODUCTION

Quantitative imaging and image informatics depend on

taking image measurements over a region of interest. These

image measurements are frequently denoted as image or

object features. They are extracted by applying a wide

variety of mathematical operations to image pixel values

implemented in software. The software implementations

vary in terms of programming languages, theoretical

formulas for the same image feature, algorithmic

implementations, input parameters, units of measurements,

and definitions of image regions of interest. The motivation

of our work is (1) to understand the variability of image

feature extractions and (2) to enable scientists to compute

any feature of interest from widely-used heterogeneous

software libraries and gain provenance of every extracted

numerical feature value. The word provenance refers to the

record of image feature value’s ultimate computational

derivation and passage through various software tools.

To study the variability, the challenges lie in (a)

identifying the same image features in multiple software

packages, (b) setting their input parameters consistently, and

(c) establishing pairs of reference images and image features

for evaluations. In addition to the knowledge about

variability, one would like to gather and access information

about each feature extraction so that the feature values are

traceable, reproducible, and executable in parallel on big

image data. The challenges of enabling extraction of

traceable image features lie in (a) integrating heterogeneous

software, (b) gathering and hyperlinking all provenance

information about feature extraction, and (c) designing a

client-server system that enables data upload, configuration,

computationally scalable feature computation, and access to

feature values and all provenance artifacts to re-execute the

image measurements. All the above challenges are mapped

into two basic questions and associated problems. (1) What

image features are trustworthy across software packages?

(2) What practical solution would improve our trust in

image features?

We approach the first problem by considering 319 image

features extracted using ImageJ/Fiji, Python (scikit-image),

CellProfiler and in-house Java software packages with 43

duplicate features across the four packages. Using the

normalized difference metric, we identified 6 out of 43

features to differ over 1 % in value. We analyzed the

sources of these numerical differences for some features to

raise the awareness of community users. We approach the

second problem by designing a web system with (1)

interfaces to loading images and extracting image features

while utilizing distributed computational resources, (2)

access to feature implementations in several software

packages, (3) a provenance information gathering

mechanism, and (4) feature values hyperlinked with all

computational provenance artifacts.

While there is an abundance of image feature

implementations, the quality of feature values in terms of

accuracy, variation, and execution traceability has not been

evaluated. Many image features have been implemented in

academic environments [1], [2], [3], commercial platforms

[4], or in publicly available image libraries [5], [6], [7]. The

use of these image features is primarily for classification

(find the most discriminative or predictive features, given a

certain number of classes) and for discovery (understand

statistical and semantic image characteristics based on

image features). In the context of discovery, our focus is on

the quality of image feature with respect to a semantically

meaningful object rather than low-level image descriptors

(e.g., Scale-Invariant Feature Transform (SIFT), Speeded-

Up Robust Features (SURF), Histograms of Oriented

Gradients (HOG), Local Phase Quantization (LPQ),

Binarized Statistical Image Features (BSIF), Local Binary

Pattern (LBP) or Local ternary patterns (LTP)). Thus, our

analysis is about accuracy of those image features that

describe intensity, shape, or texture properties of an object.

Regarding computational scalability and traceability of

image feature execution, we are leveraging work in the area

of scientific workflows, such as the capabilities of Pegasus

[8]. In comparison to many existing scientific workflows,

our work integrates heterogeneous software using a

common file interface as opposed to wrapping software to a

pre-defined workflow programming interface. Furthermore,

our work is filling the gap in traceability of image feature

execution by designing a community resource for sharing

and reproducing scientific measurements.

The novelties of the work are (a) in documenting image

feature variability across four software packages and (b) in

designing a software plug-and-play framework for adding

image feature extraction plugins, conducting image feature

comparisons, and for delivering image feature values

hyperlinked with computational provenance information.

The paper is organized as follows. Sections II, III, and IV

are devoted to variability, accuracy and traceability of image

features respectively. Sections II and III consist of

evaluation setup, numerical evaluation, and deeper analysis.

Section IV focuses on design and capabilities needed to

extract any image feature of interest from heterogeneous

software libraries and gain provenance of every extracted

numerical feature value. An overall summary is provided in

Section V.

II. VARIABILITY OF IMAGE FEATURES

The variability study provides numerical evidence about the

differences in various implementations of the same image

features.

A. Feature Extraction Software

We evaluated four software packages with the total of 218

unique features. The subsets of unique features are

implemented in Python (40 features), ImageJ/Fiji (33

features), Java (74 features), and CellProfiler (101 features).

Python features were implemented on top of an existing

image processing library (scikit-image [5]), ImageJ/Fiji [6]

features were implemented as a plugin using the ImageJ

application programming interface (API), and Java features

were implemented from scratch at NIST [9].

We focused primarily on intensity and shape features in

this work.

B. Test Images

We chose the live phase contrast 3T3 images comprised of

238 images and a total of 8162 cells with different shapes

and sizes (Figure 1) [10] to analyze common feature value

variability between all 4 software packages. The cells are

segmented using the EGT technique [11], and the masks are

saved as labeled images. The features are computed on top

of the segmented Regions of Interests (ROIs).

Figure 1: Example test image (left) and its corresponding segmented mask

(right). Each ROI in the segmented mask has a unique randomly chosen

color for display purposes.

Figure 2: Histograms of area (left) and circularity (right) features from the

objects defined by test images and their masks.

The measured images were selected for testing over

synthetic images because (a) we did not have mathematical

models for generating synthetic images that span a wide

range of each image feature, and (b) we found the measured

images to be a good initial approximation of the value range

of each image feature. Figure 2 shows the histogram of test

image measurements for area and circularity features.

C. Evaluation Metric

Given two vectors of feature values V1 and V2 computed

over a set of ROIs (image segments) by two software

implementations of the same feature, we compute their

dissimilarity metric S as the sum of relative errors

normalized with respect to the minimum of the two values

from the vectors V1 and V2 that exceed a given threshold:

S = (1)

 |V1i – V 2i| /min(V 1i , V 2i)

The index i = 1,…,n and n is the number of ROIs. T is the

user defined error threshold defined as 1 % of in our

work. The purpose of T is to detect substantial feature

differences. The error is normalized by the minimum value

which conveys the worst case error scenario.

D. Image Feature Variability Analysis

TABLE I. shows the results of feature variability

evaluations using the aforementioned metric. The “Agree”

column indicates when software have less than 1 % error

across all 8162 test cells. The “Disagree” column indicates

whether there is an error larger than 1 % across 8162 test

cells between the tools that agree and the ones that disagree.

The “Absent” column is used to denote with tools do not

have an implementation of a given feature.

TABLE I. SUMMARY OF COMMON FEATURE VARIABILITY BETWEEN

TOOLS BASED ON METRIC S (I = IMAGEJ, J = JAVA, P = PYTHON, C =

CELLPROFILER).

Feature name Agree Disagree Irrelevant

1- Perimeter P,I,J,C

2- Solidity P, C I J

3- Circularity I, J C, P

4- Kurtosis I, J C, P

5- Bounding_Box_X P, J I C

6- Bounding_Box_Y P, J I C

Figure 3 illustrates the perimeter differences between its

feature value and the average of all three computed

perimeter values per region of interest (i.e., cell segment).

The feature difference follows the formula below:

 (2)

The index i = 1,…,n; j = 1, 2, 3, j is the software index, and

n is the number of ROIs, The perimeter values range

between 44.4 and 542.5 pixels in the set of randomly chosen

64 ROIs from the 8162 available ones. The number 64

corresponds to approximately the number of ROI present in

two figures. This random data sampling is done only for

visualization purposes.

E. Sources of Feature Variations

We have summarized our analysis of some of the sources

of feature variations for the features listed in TABLE I. The

summary also includes features requiring “special attention”

since they are prone to variations.

 Perimeter and Circularity: The perimeter variability

comes from the fact that algorithmic implementations differ

in counting interior or exterior pixels, use 4 or 8

connectivity of pixels, and might interpolate between the

boundary points. Circularity is inversely proportional to

perimeter squared.

ROI Index

P
e
ri
m

e
te

r
D

if
fe

re
n
c
e
:

V
a
lu

e
 -

A
v
e
ra

g
e

Figure 3: Perimeter feature differences over multiple regions of interests

(ROIs). The unit is image pixel.

 Solidity: The same definition of solidity is used by

Python and ImageJ (Area/Convex Area). The difference

between these values comes from the convex area

differences since the implementations vary.

 Kurtosis and Skewness: The kurtosis disagreement

in values between software packages depends on whether

the excess kurtosis or kurtosis are implemented (fixed offset

by 3). Similarly, one has to be aware of multiple definitions

of skewness, for instance, sample versus population

skewness.

 Centroid (and Bounding Box): The centroid and

the bounding box are both subject to the choice of the

reference coordinate system (+col ~ x; +row ~ y or +row~ -

y). In addition, the bounding box of a ROI is defined by its

upper left corner coordinate and its width and height.

However, the bounding coordinates might be vary

depending on the choice of values as integers or floats in a

pixelated image.

 Euler number (special attention): The Euler

number definition is the number of objects (ROI) minus the

number of holes. The value might differ depending on the

assumptions about the number of ROIs (Python assumes

#ROIs = 1).

 Histogram bins for intensities represented by more

than 8 bits per pixel (special attention): ImageJ uses the max

value plus one as the upper value of the last bin. It assumes

that the lower value of the first bin is always zero.

Python and its numpy library provides two definitions. B =

histogram(X, N) uses N equally spaced bins within the

appropriate range for the given image data type. The

returned image B has no more than N discrete levels. B =

histogram(X,edges) sorts X into bins with the bin edges

specified by the vector, edges. Each bin includes the left

edge but does not include the right edge. The last bin is an

exception since it includes both edges.

 Orientation (special attention): The orientation is

the angle between the major axis of a given ROI and the x-

axis. It can be computed using two mathematical formulas:

(1) where atan is the arctangent function and

 and are the x and y decompositions of the major axis

of the ROI; (2) where and are

the second moment of area along the x and y axes and is

the product moment of area. These two formulas are

equivalent if the first one is computed in the range of

 using atan and the second one in the range of

 using atan2. The variations are observed if different

value ranges or angular units would be reported by selected

software packages. Range can be either or

 and the unit can be either radian or degree. In

addition, the sign of the output angle depends on the

coordinate system (image coordinate or graph coordinate

system with clockwise or counter clockwise axes).

F. Discussion

Absolute value of feature variability depends on the

choice of a metric. The current metric has a user-specified

threshold that was set empirically to 1 % of the relative error

 in our analysis. In addition, the current analyses do not

include texture features because we encountered a large

variety of definitions, naming inconsistencies, and hard-

coded parameters. The work on including texture features is

in progress. We would also note that the feature comparison

is conducted using pixel units. Among the evaluated

software packages, ImageJ reports all measurements in

physical units (i.e., micrometers) that a user should be aware

of.

III. ACCURACY OF IMAGE FEATURE IMPLEMENTATIONS

Accuracy analysis is based on two key components: (1)

generation of synthetic images and their corresponding

reference feature values, and (2) a metric to compute the

error between reference and computed values. In this study,

we used a theoretical feature value as the reference and

assumed that the generated synthetic images are very close

representations of analog shapes associated with the

theoretical model. We documented the representation

approximations by collecting and comparing image features

for a range of analog shape parameters.

For the accuracy evaluations, we used the same software

libraries as before but sub-selected image features for which

we could generate reference feature values. Given the fact

that we know the reference value, we could compute

normalized relative errors per ROI with respect to the

reference feature value (in comparison to the minimum

value used in Eq. (1)).

 (3)

 is the measured feature value, and i is the index of a ROI

(image segment).

A. Test Images

We designed synthetic images with objects for which

intensity, shape, and texture could be computed

theoretically. Figure 4 shows three such image examples.

The mathematical models include linearly increasing

intensities with varying ranges and an ellipse shape with

varying minor and major axes. The parameters of each

model were varied when generating synthetic images.

Additional synthetic images were created for testing Euler

number as shown in Figure 7.

Figure 4: Examples of two synthetic images with known intensity and

shape image features.

B. Image Feature Accuracy Analysis

We report accuracy analyses for three image features

including (1) perimeter of a circle, (2) major and minor axes

of ellipse, and (3) Euler number of a binary image.

 Perimeter: We created 23 synthetic binary images

of a circle with radius ranging between pixels.

The circle generation is done on images with size (500, 500)

pixels using the following formula:

 (4)

The circle centroid coordinates are and ,

and is the circle radius. The perimeter reference value was

set to . Figure 5 displays the normalized perimeter error

 with respect to the ground truth that is computed as a

function of circle radius. Based on Figure 5, the error is

large (up to 25%) for small radius values and it converges to

a value of 5% as the radius reaches values larger than 100.

Circle Radius [pixels]

P
e
ri
m

e
te

r
e
rr

o
r

[%
]

Figure 5. Normalized perimeter error vs circle radius

Major and minor axis length: During the feature

variability evaluation, we detected minor differences that

were below the 1 % threshold on feature error. To test major

and minor axis lengths we created a set of 55 ellipse images

with multiple values for major and minor axis length that

ranges between 10 and 370. Figure 6 shows the normalized

relative error of major axis length computed according to

Eq. (3) for ROIs in the 55 simulated images. It was

observed that all three implementations had an error larger

than 0.1 % when the ellipse shape was flat or the ellipse area

was small. All implementations demonstrated the same

dependency of feature error on ellipse shape/area.

Figure 6. Major axis length normalized relative error as a function of

minor/major axis length for 55 synthetic ellipses.

 Euler number: Figure 7 displays three synthetic

images and their Euler numbers (EN). EN is computed as

the number of ROIs minus the number of holes. The values

computed by Python deviated from the reference numbers

since the implementation assumes only one ROI.

3 ROIs

0 Holes

EN = 3

3 ROIs

3 Holes

EN = 0

4 ROIs

5 Holes

EN = -1

Figure 7. Synthetic images created for testing the Euler Number feature

C. Discussion

The design of a synthetic image generator plays a

significant role in representing the theoretical value and is

always limited by the integer image lattice. For example, the

results in Figure 5 and Figure 6 would have been different

if we placed the center of each ellipse at the lattice

intersection as opposed in the middle of a square pixel

(offset is 0.5). While the tools would still agree amongst

each other, there will be bias between the computed major

axis length value and the reference value. Thus, additional

accuracy evaluations are required to determine error

contributions of synthetic image generators.

IV. TRACEABILITY OF IMAGE FEATURES

In the effort to provide access to traceable image features,

we designed a client-server architecture of a web system

shown in Figure 8. The main capabilities of this web-based

framework for traceable image feature extraction are: (1)

extensibility to include image feature extraction libraries

written in any programming language via a file interface, (2)

data management to upload collections and download

feature values, (3) configuration and execution interface to

image features registered in the system, and (4)

collaborative access to traceable image feature values that

are hyperlinked to their provenance information and all

downloadable re-execution artifacts.

Figure 8: Architecture of a client-server system for traceable image feature

extraction

The system was developed as a client-server application,

built on top of a scientific workflow management system

(WMS). The server-side follows the Java Representational

State Transfer (REST) API built using the Spring

framework. It is coupled with a MongoDB database and

calls Pegasus WMS [8] to manage the feature extraction

jobs. The client-side is a light web application written in

JavaScript using the AngularJS framework. The client side

consumes the REST API from the server side.

A. Integrating heterogeneous image software

Ideally, one would like to load an image and its mask to

RAM and then compute a spectrum of image features while

capturing the provenance information. However, when

dealing with image feature methods written in

heterogeneous programming languages, the challenges lie in

retrieving, compiling and executing feature methods on

various platforms, and sharing image data loaded in RAM

with each executable. Our approach is to regroup several

existing image processing software packages into a single

access point by designing a software integration framework.

The other challenge of sharing data across heterogeneous

software is addressed by using a common file interface to

disk instead of more complicated sharing in RAM.

Input and output standardization: Our first step toward the

homogenization of heterogeneous software packages was to

define standard input and output formats.

Input: We chose the Extensible Markup Language

(XML) to design a standard input interface defining the

input parameters, such as the input file locations (raw

images, optional segmentation masks, and optional tiling

masks), output location, and feature extraction configuration

(features to extract and their optional parameters values).

Our choice of XML was motivated by the fact that most

programming languages offer libraries that can be used for

manipulating XML documents and the XML format is

human-readable.

Output: We chose Comma-Separated Values (CSV) files

as the standard output format for the extracted feature

values. This format is both machine and human readable

and supported in multiple software libraries. In order to

merge feature values from diverse feature libraries, we

defined naming conventions for the output file names and

their CSV headers with input image, ROI and feature

information.

Software executable and metadata integration: The

system was designed to be extensible to any image feature

implementation that can be run from a command-line. Each

software is compiled to an executable that runs on a server

and is launched with the common XML input file as an

argument. In order to be integrated in the system, software

has to be able to read the feature execution inputs from the

XML input file and to write the feature results following the

conventions we designed for the CSV output format and

feature names.

The integration of a new software executable in the

system is done by adding an entry in the Pegasus Workflow

Transformation Catalog. The software is then registered in

the MongoDB database by using the system API and saving

its metadata in the database. The integration of new

software metadata is performed by providing a list of

features that the software is capable of extracting, along

with eventual configurable options. The system can manage

several versions of the same software, and each version

corresponds to a new metadata entry in the database, linked

to the corresponding executable via the Pegasus

Transformation Catalog. The metadata stored in the

database are used to generate the software documentation

and feature selection web interfaces in the system, and to

link the feature values to their provenance information.

B. Key aspects of image feature execution

In order to facilitate the execution of traceable image

features implemented in heterogeneous software, we

focused on (1) automated construction of the execution

inputs captured by the XML input file, (2) input and output

data management, (3) computational scalability of feature

extraction, and (4) traceability of computed image feature

values.

Construction of feature execution inputs. The input XML

file is constructed automatically by collecting inputs via the

client interfaces. Figure 9 shows one of the web interfaces to

select features. The web interfaces allow a user to upload

image and segmentation mask collections, select data and

image feature implementations, and then launch the feature

extraction. The selected features are linked to their software

version metadata and the image collections involved in the

extraction jobs are automatically locked on the server to

prevent any further modification and allow the provenance

information to be persistent.

Figure 9: The web interface to selecting and extracting image features.

Data management: All input images, computed image

features, job configurations and provenance information are

stored in a MongoDB database. This database is accessed

via the Java API on the server, allowing the registration of

new software or new versions of existing software in the

system and linking each computed feature value to all the

provenance information.

Scalability of computations: The feature extraction

computation is managed via the Pegasus scientific workflow

[8], which was configured to use the High Throughput

Computing workload management system HTCondor.

Pegasus distributes the computations depending on the

available computational resources, collects computational

provenance, and monitors the execution.

Traceability of image feature values: The resulting image

feature values from each software package are merged into a

single table and delivered in a web interface. The delivered

feature values are hyperlinked with the input images, the

XML file that was constructed, the executable that was

launched, the software repository with the version of the

image feature extraction code, the execution environment

provenance information, and the web documentation that

contains the mathematical formula implemented in the code.

C. Analysis of image feature traceability

Image feature values are hyperlinked in the web interface

with all artifacts in order to deliver feature traceability as

defined in [12] (i.e., “ability to relate artifacts created during

the development of a software system to describe the system

from different perspectives.”).

TABLE II. COMPLEXITY OF FEATURE RE-EXECUTION FROM

ARTIFACTS FOR FOUR SOFTWARE PACKAGES. [JRE: JAVA RUNTIME

ENVIRONMENT]

Image

Feature

Software

Complexity

of Feature

Re-

execution

Required Additional

Installation

In-house

Java

Simple JRE 1.7 or higher

ImageJ

plugin

Medium JRE 1.7 or higher and

ImageJ or Fiji

Python

program

Complex Several libraries and

packages with specific

dependencies on a chosen

operating system

CellProfiler

wrapping

program

Complex Several libraries and

packages, and CellProfiler

v2.1.1 with specific

dependencies on a chosen

operating system

Beyond describing each feature value with artifacts, our

ultimate test of feature traceability is to reproduce any

feature value within a tolerance range from the hyperlinked

artifacts [13]. This can be easily achieved by replicating the

inputs (data and XML input file) and re-launching the

feature computation in the same server environment.

However, in order to run the downloaded executable with

all inputs on a third party computer, one has to replicate the

software environment of the server for launching the

computation (i.e., install run time engines, scripting

environments, libraries, and so on). We tested and classified

feature re-execution from traceable artifacts outside of the

server according to the complexity of additional installations

as: simple, medium and complex. TABLE II. shows such

evaluations of the three analyzed software packages.

D. Analysis of Feature Computation Efficiency

Having a client-server system for computing traceable

image features provided us with a platform for comparing

values across software libraries and against reference values

as reported in Sections II and III. Here, we added a

comparison of feature execution efficiency to complete the

feature characterization.

We use 238 microscopy images of NIH 3T3 cells

together with their manual segmentation masks from the set

described in Section II.B. The raw images and masks are

16-bit per pixel images, each image has a file size of 446 kB

and the entire data set contains a total of 8162 ROIs. In

order to measure the performance of software packages

against large images, we used one large field of view of

stem cell colonies (22K x 22K pixels) imaged in phase

contrast (16 BPP, 355.9 MB) and in Green Fluorescent

Protein (32 BPP after calibration, 1.9 GB). The

corresponding segmentation mask (16 BPP, 9.4 MB

containing 200 ROIs) was obtained by segmenting the phase

contrast image [14].

The following overlapping image features were

calculated by all four software packages: Area, Perimeter,

Mean intensity and Centroid. The calculations were run on a

server with the specifications: Linux Virtual Machine (VM),

operating Ubuntu 12.04 LTS 64-bit, four Intel Xeon CPUs

and 16GB of RAM. The same calculations were run five

times, and the timing and memory results were averaged.

The time and memory consumption breakdown per

software is shown in TABLE III. as collected by the

Pegasus workflow engine. CPU time is the time measured in

system clock ticks for which the CPU was dedicated to

feature calculations. This number is converted to seconds

for our server with the number of clock ticks per second

being 100 Hz. Max RSS (maximum Resident Set Size) is a

measure of the memory occupied by a process and held in

the main memory (RAM), given in kB (kilobytes) and

converted in the table below in MB (megabytes)

Based on TABLE III. the in-house Java package has the

fastest CPU computation time for a large number of small

images (8162 ROIs in 238 images) with the speed-up factor

of 2.81 (Python) and 36.55 (ImageJ). However, against a

large image (GFP), Python is the most efficient, with a

factor of 3.92 (ImageJ) and 2.51 (Java). We were not able to

obtain results for CellProfiler due to its memory

consumption exceeding our 10GB limit. Python is also the

most efficient in terms of memory consumption, especially

for the 3T3 dataset.

TABLE III. AVERAGE CPU TIME, RUN TIME AND MAXIMUM MEMORY

CONSUMPTION OF FOUR IMAGE FEATURE CALCULATIONS FOR 8399 ROIS

ON 3T3 IMAGES (3T3), 200 ROIS ON PC IMAGE (PC), AND 200 ROIS ON

GFP IMAGE (GFP) USING FOUR SOFTWARE PACKAGES.

Software Dataset CPU

time [s]

Run

time [s]

Max

RSS [MB]

Python

3T3 48.82 58.00 49.98

PC 35.71 36.38 3,731.41

GFP 53.78 56.39 4,735.54

ImageJ

3T3 76.09 76.54 312.40

PC 70.94 48.77 3,042.66

GFP 211.12 183.66 5,070.66

Java

3T3 17.32 22.88 780.11

PC 71.73 64.44 6,594.35

GFP 135.38 186.02 7,292.10

CellProfiler

3T3 633.11 676.99 353.23

PC N/A N/A N/A

GFP N/A N/A N/A

V. SUMMARY

We quantified numerical variability of 43 overlapping

image features across four software packages, determined

image accuracy of 6 features with respect to their reference

images and mathematical models, compared execution

efficiency of 4 image features, and tested feature traceability

in terms of complexity of artifact re-execution on third party

hardware. These discoveries were enabled by designing a

client-server system for integrating heterogeneous image

feature libraries, executing feature calculations, and sharing

hyperlinked image feature values with computational

provenance artifacts. We deployed the system at NIST for

internal use and testing.

In the future, we plan to complete the integration of

additional publicly available feature extraction software in

[1], [2] and [7] in order to make the image features traceable

via our designed framework. We will also investigate the

variability and accuracy of texture features, and disseminate

the software and image feature studies to the image

processing communities.

VI. ACKNOWLEDGMENT

We would like to acknowledge Antoine Vandecreme from

the Computational Science in Metrology project at NIST

who has contributed to the code development of the web

image feature extraction system.

VII. DISCLAIMER

Commercial products are identified in this document in

order to specify the experimental procedure adequately.

Such identification is not intended to imply

recommendation or endorsement by the National Institute of

Standards and Technology, nor is it intended to imply that

the products identified are necessarily the best available for

the purpose.

REFERENCES

[1] M. V Boland and R. F. Murphy, “A neural network classifier

capable of recognizing the patterns of all major subcellular

structures in fluorescence microscope images of HeLa cells.,”
Bioinformatics, vol. 17, no. 12, pp. 1213–1223, 2001.

[2] N. Orlov, L. Shamir, T. Macura, J. Johnston, D. M. Eckley, and I.
G. Goldberg, “WND-CHARM: Multi-purpose image

classification using compound image transforms,” Pattern

Recognit. Lett., vol. 29, no. 11, pp. 1684–1693, Aug. 2008.

[3] A. E. Carpenter, “Extracting rich information from images,”

Methods Mol. Biol., vol. 486, pp. 193–211, 2009.

[4] “MATLAB and Image Processing Toolbox Release 2015b,”

MathWorks Inc. [Online]. Available:

http://www.mathworks.com/help/images/index.html. [Accessed:

16-Mar-2016].

[5] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F.

Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu,

“scikit-image: image processing in Python.,” PeerJ, vol. 2, p.
e453, Jan. 2014.

[6] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M.
Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B.

Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P.
Tomancak, and A. Cardona, “Fiji: an open-source platform for

biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–

682, 2012.

[7] Itseez, “OpenCV (Open Source Computer Vision Library),”

2016. [Online]. Available: http://opencv.org/. [Accessed: 20-
Mar-2016].

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny,

and K. Wenger, “Pegasus, a workflow management system for

science automation,” Futur. Gener. Comput. Syst., vol. 46, pp.
17–35, May 2015.

[9] I. NIST, “Image Features,” web page, 2016. [Online]. Available:
https://isg.nist.gov/deepzoomweb/stemcellfeatures. [Accessed:

31-Mar-2016].

[10] M. Halter, D. R. Sisan, J. Chalfoun, B. L. Stottrup, A. Cardone,

A. A. Dima, A. Tona, A. L. Plant, and J. T. Elliott, “Cell cycle

dependent TN-C promoter activity determined by live cell
imaging,” Cytom. Part A, vol. 79, no. 3, pp. 192–202, Mar. 2011.

[11] J. Chalfoun, M. Majurski, A. Peskin, C. Breen, and P. Bajcsy,
“Empirical Gradient Threshold Technique for Automated

Segmentation across Image Modalities and Cell Lines.,” J.

Microsc., no. Under Review, pp. 1–18, 2014.

[12] G. Spanoudakis and A. Zisman, “Software traceability: a

roadmap,” in Advances in software knowledge engineering, vol.
III, S. K. Chang, Ed. World Scientific Publishing, 2005, pp. 1–

35.

[13] T. Crick, B. A. Hall, and S. Ishtiaq, “Reproducibility as a

Technical Specification,” Comput. Res. Repos., vol. abs/1504.0,

p. 6, 2015.

[14] K. Bhadriraju, M. Halter, J. Amelot, P. Bajcsy, J. Chalfoun, A.

Vandecreme, B. S. Mallon, K. Park, S. Sista, J. T. Elliott, and A.
L. Plant, “Large-scale time-lapse microscopy of Oct4 expression

in human embryonic stem cell colonies,” Stem Cell Res., vol. 17,

no. 1, pp. 122–129, 2016.

